Risk-Aware Stochastic MPC for Chance-Constrained Linear Systems

被引:1
作者
Tooranjipour, Pouria [1 ]
Kiumarsi, Bahare [1 ]
Modares, Hamidreza [2 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48863 USA
来源
IEEE OPEN JOURNAL OF CONTROL SYSTEMS | 2024年 / 3卷
基金
美国国家科学基金会;
关键词
Chance constraints; conditional value at risk; distributionally robust optimization; risk -aware MPC; MODEL-PREDICTIVE CONTROL; OPTIMIZATION; UNCERTAINTY; STABILITY;
D O I
10.1109/OJCSYS.2024.3421372
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fully risk-aware model predictive control (MPC) framework for chance-constrained discrete-time linear control systems with process noise. Conditional value-at-risk (CVaR) as a popular coherent risk measure is incorporated in both the constraints and the cost function of the MPC framework. This allows the system to navigate the entire spectrum of risk assessments, from worst-case to risk-neutral scenarios, ensuring both constraint satisfaction and performance optimization in stochastic environments. The recursive feasibility and risk-aware exponential stability of the resulting risk-aware MPC are demonstrated through rigorous theoretical analysis by considering the disturbance feedback policy parameterization. In the end, two numerical examples are given to elucidate the efficacy of the proposed method.
引用
收藏
页码:282 / 294
页数:13
相关论文
共 45 条
  • [31] Rawlings J.B., 2017, Model Predictive Control: Theory, Computation, and Design, V2
  • [32] Rockafellar RT., 2000, Journal of Risk, V2, P21, DOI DOI 10.21314/JOR.2000.038
  • [33] Optimization of convex risk functions
    Ruszczynski, Andrzej
    Shapiro, Alexander
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (03) : 433 - 452
  • [34] Minimax analysis of stochastic problems
    Shapiro, A
    Kleywegt, A
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (03) : 523 - 542
  • [35] Shapiro A., 2001, Semi- Infinite Programming Recent Advances, P165
  • [36] Shapiro A., 2021, Lectures on Stochastic Programming: Modeling and Theory
  • [37] A Framework for Time-Consistent, Risk-Sensitive Model Predictive Control: Theory and Algorithms
    Singh, Sumeet
    Chow, Yinlam
    Majumdar, Anirudha
    Pavone, Marco
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) : 2905 - 2912
  • [38] Sopasakis P, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P375, DOI [10.23919/ECC.2019.8796021, 10.23919/ecc.2019.8796021]
  • [39] Risk-averse model predictive control
    Sopasakis, Pantelis
    Herceg, Domagoj
    Bemporad, Alberto
    Patrinos, Panagiotis
    [J]. AUTOMATICA, 2019, 100 : 281 - 288
  • [40] Umenberger J., 2018, P ADV NEUR INF PROC, V31, P9595