Risk-Aware Stochastic MPC for Chance-Constrained Linear Systems

被引:1
作者
Tooranjipour, Pouria [1 ]
Kiumarsi, Bahare [1 ]
Modares, Hamidreza [2 ]
机构
[1] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48863 USA
来源
IEEE OPEN JOURNAL OF CONTROL SYSTEMS | 2024年 / 3卷
基金
美国国家科学基金会;
关键词
Chance constraints; conditional value at risk; distributionally robust optimization; risk -aware MPC; MODEL-PREDICTIVE CONTROL; OPTIMIZATION; UNCERTAINTY; STABILITY;
D O I
10.1109/OJCSYS.2024.3421372
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fully risk-aware model predictive control (MPC) framework for chance-constrained discrete-time linear control systems with process noise. Conditional value-at-risk (CVaR) as a popular coherent risk measure is incorporated in both the constraints and the cost function of the MPC framework. This allows the system to navigate the entire spectrum of risk assessments, from worst-case to risk-neutral scenarios, ensuring both constraint satisfaction and performance optimization in stochastic environments. The recursive feasibility and risk-aware exponential stability of the resulting risk-aware MPC are demonstrated through rigorous theoretical analysis by considering the disturbance feedback policy parameterization. In the end, two numerical examples are given to elucidate the efficacy of the proposed method.
引用
收藏
页码:282 / 294
页数:13
相关论文
共 45 条
  • [1] Coherent measures of risk
    Artzner, P
    Delbaen, F
    Eber, JM
    Heath, D
    [J]. MATHEMATICAL FINANCE, 1999, 9 (03) : 203 - 228
  • [2] Astrom K.J., 2021, Feedback Systems: An Introduction for Scientists and Engineers
  • [3] Ben-Tal A, 2009, PRINC SER APPL MATH, P3
  • [4] Stabilizing Model Predictive Control of Stochastic Constrained Linear Systems
    Bernardini, Daniele
    Bemporad, Alberto
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (06) : 1468 - 1480
  • [5] Boyd S., 1994, Linear matrix inequalities in system and control theory, DOI DOI 10.1137/1.9781611970777
  • [6] Camacho EF., 2004, ADV TK CONT SIGN PRO, DOI 10.1007/978-0-85729-398-5
  • [7] Robust Tubes in Nonlinear Model Predictive Control
    Cannon, Mark
    Buerger, Johannes
    Kouvaritakis, Basil
    Rakovic, Sasa
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (08) : 1942 - 1947
  • [8] Chapman M. P., 2022, arXiv
  • [9] CHANCE-CONSTRAINED PROGRAMMING
    CHARNES, A
    COOPER, WW
    [J]. MANAGEMENT SCIENCE, 1959, 6 (01) : 73 - 79
  • [10] From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization
    Chen, Wenqing
    Sim, Melvyn
    Sun, Jie
    Teo, Chung-Piaw
    [J]. OPERATIONS RESEARCH, 2010, 58 (02) : 470 - 485