Predicting Composition Evolution for a Sulfuric Acid-Dimethylamine System from Monomer to Nanoparticle Using Machine Learning

被引:0
作者
Liu, Yi-Rong [1 ]
Jiang, Yan [1 ]
机构
[1] Panzhihua Univ, Sch Vanadium & Titanium, Panzhihua 617000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTICLE FORMATION; IODINE OXOACIDS; NUCLEATION; AEROSOL; GROWTH; AMINES; MODEL;
D O I
10.1021/acs.jpca.4c06062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental and theoretical studies on the compositional changes of new particle formation in the nucleation and initial growth stages of acid-base systems (2 and 5 nm) are extremely challenging. This study proposes a machine learning method for predicting the composition change of the sulfuric acid-dimethylamine system in the transformation from monomer to nanoparticle by learning the structure and composition information on small-sized sulfuric acid (SA)-dimethylamine (DMA) molecular clusters. Based on this method and changes in components, we found that the sulfuric acid-dimethylamine growth was mainly through the alternate adsorption of (SA)1(DMA)1, (SA)1(DMA)2, and (SA)1 clusters at the early stage of nucleation, which accounted for about 70, 20, and 10%, respectively. This can explain the nature of possible changes in cluster acidity during the initial nucleation stage for the sulfuric acid-dimethylamine system. This method can also predict the base-stabilization mechanism of the sulfuric acid-dimethylamine system without relying on any experimental data, thereby yielding results that are consistent with those of previous experimental measurement.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 41 条
[1]   Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere [J].
Almeida, Joao ;
Schobesberger, Siegfried ;
Kuerten, Andreas ;
Ortega, Ismael K. ;
Kupiainen-Maatta, Oona ;
Praplan, Arnaud P. ;
Adamov, Alexey ;
Amorim, Antonio ;
Bianchi, Federico ;
Breitenlechner, Martin ;
David, Andre ;
Dommen, Josef ;
Donahue, Neil M. ;
Downard, Andrew ;
Dunne, Eimear ;
Duplissy, Jonathan ;
Ehrhart, Sebastian ;
Flagan, Richard C. ;
Franchin, Alessandro ;
Guida, Roberto ;
Hakala, Jani ;
Hansel, Armin ;
Heinritzi, Martin ;
Henschel, Henning ;
Jokinen, Tuija ;
Junninen, Heikki ;
Kajos, Maija ;
Kangasluoma, Juha ;
Keskinen, Helmi ;
Kupc, Agnieszka ;
Kurten, Theo ;
Kvashin, Alexander N. ;
Laaksonen, Ari ;
Lehtipalo, Katrianne ;
Leiminger, Markus ;
Leppa, Johannes ;
Loukonen, Ville ;
Makhmutov, Vladimir ;
Mathot, Serge ;
McGrath, Matthew J. ;
Nieminen, Tuomo ;
Olenius, Tinja ;
Onnela, Antti ;
Petaja, Tuukka ;
Riccobono, Francesco ;
Riipinen, Ilona ;
Rissanen, Matti ;
Rondo, Linda ;
Ruuskanen, Taina ;
Santos, Filipe D. .
NATURE, 2013, 502 (7471) :359-+
[2]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[3]   The search for sparse data in molecular datasets: Application of active learning to identify extremely low volatile organic compounds [J].
Besel, Vitus ;
Todorovic, Milica ;
Kurten, Theo ;
Vehkamaki, Hanna ;
Rinke, Patrick .
JOURNAL OF AEROSOL SCIENCE, 2024, 179
[4]   Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules [J].
Besel, Vitus ;
Todorovic, Milica ;
Kurten, Theo ;
Rinke, Patrick ;
Vehkamaki, Hanna .
SCIENTIFIC DATA, 2023, 10 (01)
[5]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[6]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[8]   Modeling the formation and growth of atmospheric molecular clusters: A review [J].
Elm, Jonas ;
Kubecka, Jakub ;
Besel, Vitus ;
Jaaskelainen, Matias J. ;
Halonen, Roope ;
Kurten, Theo ;
Vehkamaki, Hanna .
JOURNAL OF AEROSOL SCIENCE, 2020, 149
[10]   Response to Comment on "Predicting reaction performance in C-N cross-coupling using machine learning" [J].
Estrada, Jesus G. ;
Ahneman, Derek T. ;
Sheridan, Robert P. ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 362 (6416)