共 55 条
- [1] Su S., Et al., Blindly assess image quality in the wild guided by a selfadaptive hyper network, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 3667-3676, (2020)
- [2] Zhang W., Ma K., Yan J., Deng D., Wang Z., Blind image quality assessment using a deep bilinear convolutional neural network, IEEE Trans. Circuits Syst. Video Technol., 30, 1, pp. 36-47, (2020)
- [3] Gu J., Cai H., Chen H., Ye X., Ren J., Dong C., Image Quality Assessment for Perceptual Image Restoration: A New Dataset, Benchmark and Metric, (2020)
- [4] Deng Y., Chen K., Image Quality Analysis for Searches, (2014)
- [5] Zhang W., Et al., Perceptual attacks of no-reference image quality models with human-in-The-loop, Proc. 36th Conf. Neural Inf. Process. Syst., pp. 2916-2929, (2022)
- [6] Shumitskaya E., Antsiferova A., Vatolin D.S., Universal perturbation attack on differentiable no-reference image-and video-quality metrics, Proc. Brit. Mach. Vis. Conf., pp. 1-12, (2022)
- [7] Korhonen J., You J., Adversarial attacks against blind image quality assessment models, Proc. 2nd Workshop Quality Exper. Vis. Multimedia Appl., pp. 3-11, (2022)
- [8] Sang Q., Zhang H., Liu L., Wu X., Bovik A.C., On the generation of adversarial examples for image quality assessment, Vis. Comput., 40, 5, pp. 3183-3198, (2024)
- [9] Guo C., Gardner J., You Y., Wilson A.G., Weinberger K., Simple black-box adversarial attacks, Proc. Int. Conf. Mach. Learn., pp. 2484-2493, (2019)
- [10] Li X.-C., Zhang X.-Y., Yin F., Liu C.-L., Decision-based adversarial attack with frequency mixup, IEEE Trans. Inf. Forensics Security, 17, pp. 1038-1052, (2022)