Evaluation of Kinetic and Thermodynamic Parameters of Pyrolysis and Combustion Processes for Bamboo Using Thermogravimetric Analysis

被引:3
|
作者
Lei, Jialiu [1 ,2 ]
Wang, Yao [1 ]
Wang, Qihui [1 ]
Deng, Shiru [1 ]
Fu, Yongjun [1 ]
机构
[1] Hubei Polytech Univ, Sch Mat Sci & Engn, Huangshi 435003, Peoples R China
[2] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
关键词
thermogravimetric analysis; model-free approaches; thermal behavior; characteristic parameter; bioenergy valorization; REACTION-MECHANISM; TG-FTIR; BIOMASS; DECOMPOSITION; GASIFICATION; EMISSION; BEHAVIOR; ENERGY; WOOD;
D O I
10.3390/pr12112458
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
As a typical forestry waste, bamboo has gained increasing attention for its potential applications. In order to optimize its valorization, understanding the kinetic and thermodynamic parameters of bamboo pyrolysis and combustion is crucial. In this study, thermogravimetric analysis (TGA) was employed to examine bamboo powder's pyrolysis and combustion behaviors under different temperature ramps in nitrogen and air environments, and the kinetic and thermodynamic parameters were evaluated using the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Starink (STR) model-free approaches. The main findings are as follows. (1) The thermogravimetry (TG) and derivative thermogravimetry (DTG) (DTG) curves reveal that bamboo pyrolysis occurs in three distinct stages: drying, devolatilization, and carbonization. Similarly, combustion also proceeds through three stages: drying, devolatilization, and char combustion. Notable differences in the temperature ranges of the key stages were observed between pyrolysis and combustion. (2) The activation energies during the oxidative devolatilization stage of combustion are notably lower compared to those during pyrolysis devolatilization. The disparity in activation energy is even more pronounced in the third stage. (3) Thermodynamic analysis shows that the pyrolysis and combustion of bamboo are endothermic and non-spontaneous. It can be stably converted into value-added energy through the pyrolysis or combustion process. This study provides essential data to aid in designing and scaling up the thermochemical conversion processes for bamboo and promote its efficient valorization of bioenergy.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Evaluation of kinetic and thermodynamic parameters of Argemonemexicana seed pyrolysis via thermogravimetric analyser
    Pandey, Satya Prakash
    Sahoo, Abhisek
    Kumar, Sachin
    BIOMASS CONVERSION AND BIOREFINERY, 2021,
  • [2] Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis
    Varma, Anil Kumar
    Singh, Shweta
    Rathore, Ashwani Kumar
    Thakur, Lokendra Singh
    Shankar, Ravi
    Mondal, Prasenjit
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (11) : 4877 - 4888
  • [3] Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis
    Anil Kumar Varma
    Shweta Singh
    Ashwani Kumar Rathore
    Lokendra Singh Thakur
    Ravi Shankar
    Prasenjit Mondal
    Biomass Conversion and Biorefinery, 2022, 12 : 4877 - 4888
  • [4] Investigating Kinetic and Thermodynamic Parameters in the Pyrolysis of Sheep Manure Using Thermogravimetric Analysis
    Siswantara, Ahmad Indra
    Rizianiza, Illa
    Mahdi, Diyas Prawara
    Farhan, Tanwir Ahmad
    Widiawati, Candra Damis
    Syafei, M. Hilman Gumelar
    Syuriadi, Adi
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2024, 12 (03):
  • [5] Determination of kinetic parameters and thermodynamic properties for ash (Fraxinus) wood sawdust slow pyrolysis by thermogravimetric analysis
    Nyombi, Antony
    Williams, Mike
    Wessling, Roland
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2018, 40 (22) : 2660 - 2670
  • [6] Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis
    Chong, Cheng Tung
    Mong, Guo Ren
    Ng, Jo-Han
    Chong, William Woei Fong
    Ani, Farid Nasir
    Lam, Su Shiung
    Ong, Hwai Chyuan
    ENERGY CONVERSION AND MANAGEMENT, 2019, 180 : 1260 - 1267
  • [7] Kinetic and thermodynamic parameters of petroleum pitch pyrolysis using thermogravimetric analysis (TGA): Part I
    Sahoo, Khokan
    Raja, Kanuparthy Naga
    Kumbhakarna, Neeraj
    Kumar, Sudarshan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [8] Co-pyrolysis of petroleum coke and wood pellet blend: Kinetic and Thermodynamic Evaluation using Thermogravimetric Analysis
    Rasool, Tanveer
    Srivastava, Vimal Chandra
    Toshniwal, Pratik
    Najar, Ishfaq
    Singh, Vikash
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 56
  • [9] Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion
    Dessi, Federica
    Mureddu, Mauro
    Ferrara, Francesca
    Fermoso, Javier
    Orsini, Alessandro
    Sanna, Aimaro
    Pettinau, Alberto
    ENERGY, 2021, 217
  • [10] Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis
    Kaur, Ravneet
    Gera, Poonam
    Jha, Mithilesh Kumar
    Bhaskar, Thallada
    BIORESOURCE TECHNOLOGY, 2018, 250 : 422 - 428