A Converse Lyapunov-Krasovskii Theorem for the Global Asymptotic Local Exponential Stability of Nonlinear Time-Delay Systems

被引:0
|
作者
机构
[1] DI Ferdinando, M.
[2] Pepe, P.
[3] Di Gennaro, S.
来源
DI Ferdinando, M. (mario.diferdinando@univaq.it) | 1600年 / Institute of Electrical and Electronics Engineers Inc.卷 / 05期
基金
欧盟地平线“2020”;
关键词
Lyapunov functions - System stability - Nonlinear equations - Time delay - Delay control systems - Differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
In this letter, the notion of GALES (Global Asymptotic Local Exponential Stability) is extended to nonlinear systems described by Retarded Functional Differential Equations. Necessary and sufficient Lyapunov-Krasovskii conditions ensuring the GALES of nonlinear time-delay systems are provided. The conditions related to the lower bound and to the dissipation rate of the Lyapunov-Krasovskii functional involve only the current value of the solution, making the provided tool easy to use. An example validating the results is presented. © 2017 IEEE.
引用
收藏
相关论文
共 50 条
  • [1] A Converse Lyapunov-Krasovskii Theorem for the Global Asymptotic Local Exponential Stability of Nonlinear Time-Delay Systems
    Di Ferdinando, M.
    Pepe, P.
    Gennaro, S. Di
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 7 - 12
  • [2] A relaxed Lyapunov-Krasovskii condition for global exponential stability of Lipschitz time-delay systems
    Chaillet, Antoine
    Orlowski, Jakub
    Pepe, Pierdomenico
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 43 - 48
  • [3] Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear systems with time-delay
    Aleksandrov, A. Yu
    Mason, Oliver
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (08): : 4381 - 4394
  • [4] Lyapunov-Krasovskii Approach for Delay-Dependent Stability Analysis of Nonlinear Time-Delay Systems
    Vali, A. R.
    Nikravesh, S. K. Y.
    SCIENTIA IRANICA, 2007, 14 (06) : 586 - 590
  • [5] LYAPUNOV-KRASOVSKII STABILITY THEOREM FOR FRACTIONAL SYSTEMS WITH DELAY
    Baleanu, D.
    Ranjbar N, A.
    Sadati R, S. J.
    Delavari, R. H.
    Abdeljawad , T.
    Gejji, V.
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 (5-6): : 636 - 643
  • [6] Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems
    Kharitonov, VL
    Zhabko, AP
    AUTOMATICA, 2003, 39 (01) : 15 - 20
  • [7] Asymmetric Lyapunov-Krasovskii functional method on stability of time-delay systems
    Sheng, Zhaoliang
    Lin, Chong
    Chen, Bing
    Wang, Qing-Guo
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (07) : 2847 - 2854
  • [8] A Lyapunov-Krasovskii methodology for iISS of time-delay systems
    Pepe, P.
    Jiang, Z. -P.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4208 - +
  • [9] On robust stability for uncertain time-delay systems: A polyhedral Lyapunov-Krasovskii approach
    Guan, XP
    Chen, CL
    Shi, P
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2005, 24 (01) : 1 - 18
  • [10] Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems
    Medvedeva, Irina V.
    Zhabko, Alexey P.
    AUTOMATICA, 2015, 51 : 372 - 377