Combinatorics and topology of toric arrangements defined by root systems

被引:0
作者
Moci, Luca [1 ]
机构
[1] Dipartimento di Matematica, Università degli Studi Roma Tre, 00146 Roma, Largo San Leonardo Murialdo
来源
Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni | 2008年 / 19卷 / 04期
关键词
Affine Dynkin diagram; Poincaré; polynomial; Regular points; Root system; Toric arrangement;
D O I
10.4171/RLM/526
中图分类号
学科分类号
摘要
Given the toric (or toral) arrangement defined by a root system φ, we classify and count its components of each dimension. We show how to reduce to the case of 0-dimensional components, and in this case we give an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of φ. Then we compute the Euler characteristic and the Poincaré polynomial of the complement of the arrangement, which is the set of regular points of the torus.
引用
收藏
页码:293 / 308
页数:15
相关论文
共 26 条
[1]  
Baldoni W., Beck M., Cochet C., Vergne M., Volume of polytopes and partition function, Discrete Comput. Geom., 35, pp. 551-595, (2006)
[2]  
Brieskorn E., Sur les groupes des tresses (d'après V. I. Arnol'd), Sém. Bourbaki, pp. 21-44, (1973)
[3]  
Brion M., Vergne M., Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. (4), 32, pp. 715-741, (1999)
[4]  
Callegaro F., Moroni D., Salvetti M., Cohomology of affine artin groups and applications, Trans. Amer. Math. Soc., 360, pp. 4169-4188, (2008)
[5]  
Carter R.W., Conjugacy classes in the weyl group, Compos. Math., 25, pp. 1-59, (1972)
[6]  
Cochet C., Vector Partition Function and Representation Theory, (2005)
[7]  
De Concini C., Procesi C., Nested sets and jeffrey-kirwan cycles, Geometric Methods in Algebra and Number Theory, Progr. Math., 235, pp. 139-149, (2005)
[8]  
De Concini C., Procesi C., On the geometry of toric arrangements, Transformation Groups, 10, 3-4, pp. 387-422, (2005)
[9]  
De Concini C., Procesi C., Stembridge J.R., A curious identity and the volume of the root spherical simplex, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 17, 2, pp. 155-165, (2006)
[10]  
De Concini C., Procesi C., Topics in Hyperplane Arrangements, Polytopes and Box-splines