D-TrAttUnet: Toward hybrid CNN-transformer architecture for generic and subtle segmentation in medical images

被引:3
|
作者
Bougourzi F. [1 ]
Dornaika F. [3 ,4 ]
Distante C. [2 ]
Taleb-Ahmed A. [5 ]
机构
[1] Junia, UMR 8520, CNRS, Centrale Lille, University of Polytechnique Hauts-de-France, Lille
[2] Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Lecce
[3] University of the Basque Country UPV/EHU, San Sebastian
[4] IKERBASQUE, Basque Foundation for Science, Bilbao
[5] Université Polytechnique Hauts-de-France, Université de Lille, CNRS, Valenciennes, Hauts-de-France
关键词
Bone Metastasis; Convolutional Neural Network; Covid-19; Deep learning; Segmentation; Transformer; Unet;
D O I
10.1016/j.compbiomed.2024.108590
中图分类号
学科分类号
摘要
Over the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant potential for several important medical applications. As complicated diseases increase and the number of cases rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an assistant to medical experts, providing valuable insights and guidance. A particularly challenging task in this area is lesion segmentation, a task that is challenging even for experienced radiologists. The complexity of this task highlights the urgent need for robust machine learning approaches to support medical staff. In response, we present our novel solution: the D-TrAttUnet architecture. This framework is based on the observation that different diseases often target specific organs. Our architecture includes an encoder–decoder structure with a composite Transformer-CNN encoder and dual decoders. The encoder includes two paths: the Transformer path and the Encoders Fusion Module path. The Dual-Decoder configuration uses two identical decoders, each with attention gates. This allows the model to simultaneously segment lesions and organs and integrate their segmentation losses. To validate our approach, we performed evaluations on the Covid-19 and Bone Metastasis segmentation tasks. We also investigated the adaptability of the model by testing it without the second decoder in the segmentation of glands and nuclei. The results confirmed the superiority of our approach, especially in Covid-19 infections and the segmentation of bone metastases. In addition, the hybrid encoder showed exceptional performance in the segmentation of glands and nuclei, solidifying its role in modern medical image analysis. © 2024 The Author(s)
引用
收藏
相关论文
共 50 条
  • [1] CNN-Transformer Hybrid Architecture for Underwater Sonar Image Segmentation
    Lei, Juan
    Wang, Huigang
    Lei, Zelin
    Li, Jiayuan
    Rong, Shaowei
    REMOTE SENSING, 2025, 17 (04)
  • [2] TransUMobileNet: Integrating multi-channel attention fusion with hybrid CNN-Transformer architecture for medical image segmentation
    Cai, Sijing
    Jiang, Yukun
    Xiao, Yuwei
    Zeng, Jian
    Zhou, Guangming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 107
  • [3] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [4] Emb-trattunet: a novel edge loss function and transformer-CNN architecture for multi-classes pneumonia infection segmentation in low annotation regimes
    Fares Bougourzi
    Fadi Dornaika
    Amir Nakib
    Abdelmalik Taleb-Ahmed
    Artificial Intelligence Review, 57
  • [5] Emb-trattunet: a novel edge loss function and transformer-CNN architecture for multi-classes pneumonia infection segmentation in low annotation regimes
    Bougourzi, Fares
    Dornaika, Fadi
    Nakib, Amir
    Taleb-Ahmed, Abdelmalik
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (04)
  • [6] Speckle Noise Reduction for Medical Ultrasound Images Using Hybrid CNN-Transformer Network
    Sivaanpu, Anparasy
    Punithakumar, Kumaradevan
    Zheng, Rui
    Noga, Michelle
    Ta, Dean
    Lou, Edmond H. M.
    Le, Lawrence H.
    IEEE ACCESS, 2024, 12 : 168607 - 168625
  • [7] CTA-UNet: CNN-transformer architecture UNet for dental CBCT images segmentation
    Chen, Zeyu
    Chen, Senyang
    Hu, Fengjun
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17)
  • [8] TransSea: Hybrid CNN-Transformer With Semantic Awareness for 3-D Brain Tumor Segmentation
    Liu, Yu
    Ma, Yize
    Zhu, Zhiqin
    Cheng, Juan
    Chen, Xun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [9] MCT-Net: a multi-branch hybrid CNN-transformer model for medical image segmentation
    Longfeng Shen
    Liangjin Diao
    Rui Peng
    Jiacong Chen
    Zhengtian Lu
    Fangzhen Ge
    Pattern Analysis and Applications, 2025, 28 (2)
  • [10] HCT-net: hybrid CNN-transformer model based on a neural architecture search network for medical image segmentation
    Zhihong Yu
    Feifei Lee
    Qiu Chen
    Applied Intelligence, 2023, 53 : 19990 - 20006