Enhancing efficiency of dense array CPV receivers with controlled DC-DC converters and adaptive microfluidic cooling under non-uniform solar irradiance

被引:2
作者
Regany, Desideri [1 ]
Palau, Francesc Majos [1 ]
Crespo, Alicia [1 ,2 ]
Barrau, Jerome [1 ]
Vilarrubi, Montse [1 ]
Rosell-Urrutia, Joan [1 ]
机构
[1] Univ Lleida, Sustainable Energy Machinery & Bldg SEMB Res Grp, Pere Cabrera 3, Lleida 25001, Spain
[2] Univ Rovira i Virgili, Dept Mech Engn, Ave Paisos Catalans 26, Tarragona 43007, Spain
关键词
Concentrating photovoltaics; Mismatch losses; DC-DC converter; Non-uniform illumination; Self-adaptive microfluidic cooling system; CELL; ELECTROLYZER; ILLUMINATION; OPTIMIZATION; CONTACTS; DESIGN; SYSTEM; IMPACT;
D O I
10.1016/j.solmat.2024.113262
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Concentrating solar technologies offer substantial potential for optimizing solar energy for heat and power generation, particularly in green hydrogen production. This study investigates the use of commercial high efficiency concentrated photovoltaic (CPV) cells in a central tower concentrating solar system to enhance energy conversion efficiency. By integrating DC-DC converters with self-adaptive microfluidic cooling systems, we address current mismatches and temperature variations that affect CPV performance. The novel receiver design ensures scalability for large-scale implementations by implementing the electrical connections between DC-DC converters and each CPV cell without creating shaded areas. We numerically model and simulate the thermodynamic and electrical characteristics of a dense array CPV receiver, evaluating six illumination profiles. Our results indicate a significant improvement in receiver efficiency compared to the traditional configuration with bypass diodes, demonstrating an increase from 23.4 % to 30.3 % under a central Gaussian illumination profile, and reaching up to 38 % relative efficiency improvement depending on the applied profile. Power transfer losses decrease from 26 % to 10 % when 200 kW/m2 of illumination non-uniformity occurs. The proposed solution enhances reliability and energy conversion efficiency, presenting a viable path forward for large-scale CPV applications.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Performance, limits, and thermal stress analysis of high concentrator multijunction solar cell under passive cooling conditions [J].
Abo-Zahhad, Essam M. ;
Ookawara, Shinichi ;
Radwan, Ali ;
El-Shazly, A. H. ;
El-Kady, M. F. ;
Esmail, Mohamed F. C. .
APPLIED THERMAL ENGINEERING, 2020, 164
[2]   The PV-FIBRE concentrator:: A system for indoor operation of 1000X MJ solar cells [J].
Anton, I. ;
Silva, D. ;
Sala, G. ;
Bett, A. W. ;
Siefer, G. ;
Luque-Heredia, I. ;
Trebst, T. .
PROGRESS IN PHOTOVOLTAICS, 2007, 15 (05) :431-447
[3]  
Azarkish H, 2017, INTERSOC C THERMAL T, P522
[4]  
Azurspace Solar Power GMBH, Concentrator Triple Junction Solar Cell. Cell Type: 3C44-5,5 x 5,5mm2. Application: Concentrating Photovoltaic (CPV) Modules
[5]   Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production [J].
Daneshpour, Raheleh ;
Mehrpooya, Mehdi .
ENERGY CONVERSION AND MANAGEMENT, 2018, 176 :274-286
[6]   Impact of Via Hole Integration on Multijunction Solar Cells for Through Cell Via Contacts and Associated Passivation Treatment [J].
de Lafontaine, Mathieu ;
Darnon, Maxime ;
Colin, Clement ;
Bouzazi, Boussairi ;
Volatier, Maite ;
Ares, Richard ;
Fafard, Simon ;
Aimez, Vincent ;
Jaouad, Abdelatif .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (05) :1456-1461
[7]   Silicon back contact solar cell configuration: A pathway towards higher efficiency [J].
Desa, M. K. Mat ;
Sapeai, S. ;
Azhari, A. W. ;
Sopian, K. ;
Sulaiman, M. Y. ;
Amin, N. ;
Zaidi, S. H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :1516-1532
[8]  
Dickson D.C.., 1960, Photo-voltaic Semiconductor Apparatus or the like, P1956
[9]  
Dimroth F., Fraunhofer ISE Develops the World's Most Efficient Solar Cell with 47.6 Percent Efficiency
[10]  
Dincer I, 2014, ADVANCED POWER GENERATION SYSTEMS, P143