Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications

被引:0
作者
Liu, Hai [1 ]
Liu, Tingting [1 ]
Liu, Li [1 ]
An, Qing [1 ]
Bai, Chengyue [1 ]
Li, Huiyou [1 ]
机构
[1] Wuchang Univ Technol, Sch Artificial Intelligence, 16 Jiang Xia Ave, Wuhan 430223, Hubei, Peoples R China
关键词
Infrared spectrum; discrete Radon transform; high-resolution; Regularization; NEURAL-NETWORKS; ENHANCEMENT;
D O I
10.1016/j.infrared.2024.105640
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared spectrum often suffers from the resolution reduction and random noise. This paper proposes a novel blind infrared spectral reconstruction model that integrates total variation constraint and frequency domain transformation. This model aims to achieve an accurate deconvolution model of infrared spectra by making the coefficient distribution of discrete Radon transform (DRT) of overlapping infrared spectra close to highresolution infrared spectra. Secondly, we use total variation (TV) as a popular effective spectral prior model, which has been applied in regularization based blind deconvolution of infrared spectra because it can preserve small peaks. In this study, the model fully utilizes spatial information from different image regions and proposes an extended split Bregman iteration method to solve the joint minimization problem. Specifically, the DRT coefficient distribution of overlapping infrared spectra should be close to high-resolution infrared spectra. We believe that there are differences between the DRT coefficient distribution of clean spectra and the distribution of degraded infrared spectra. Extensive experimental results have shown that the proposed method outperforms most existing methods in terms of spectral structure quality and quantitative measurement. The high-resolution infrared spectra after deconvolution can be used for biomedical imaging and clinical applications.
引用
收藏
页数:9
相关论文
共 43 条
[31]   Deep learning model based on molecular spectra to determine chlorpyrifos residues in corn oil [J].
Mei, Congli ;
Xue, Yingchao ;
Li, Qihan ;
Jiang, Hui .
INFRARED PHYSICS & TECHNOLOGY, 2024, 140
[32]   Sparse Reconstruction Using Block Sparse Bayesian Learning With Fast Marginalized Likelihood Maximization for Near-Infrared Spectroscopy [J].
Pan, Tianhong ;
Wu, Chao ;
Chen, Qi .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[33]   Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b [J].
Powell, Diana ;
Feinstein, Adina D. ;
Lee, Elspeth K. H. ;
Zhang, Michael ;
Tsai, Shang-Min ;
Taylor, Jake ;
Kirk, James ;
Bell, Taylor ;
Barstow, Joanna K. ;
Gao, Peter ;
Bean, Jacob L. ;
Blecic, Jasmina ;
Chubb, Katy L. ;
Crossfield, Ian J. M. ;
Jordan, Sean ;
Kitzmann, Daniel ;
Moran, Sarah E. ;
Morello, Giuseppe ;
Moses, Julianne I. ;
Welbanks, Luis ;
Yang, Jeehyun ;
Zhang, Xi ;
Ahrer, Eva-Maria ;
Bello-Arufe, Aaron ;
Brande, Jonathan ;
Casewell, S. L. ;
Crouzet, Nicolas ;
Cubillos, Patricio E. ;
Demory, Brice-Olivier ;
Dyrek, Achrene ;
Flagg, Laura ;
Hu, Renyu ;
Inglis, Julie ;
Jones, Kathryn D. ;
Kreidberg, Laura ;
Lopez-Morales, Mercedes ;
Lagage, Pierre-Olivier ;
Meier Valdes, Erik A. ;
Miguel, Yamila ;
Parmentier, Vivien ;
Piette, Anjali A. A. ;
Rackham, Benjamin V. ;
Radica, Michael ;
Redfield, Seth ;
Stevenson, Kevin B. ;
Wakeford, Hannah R. ;
Aggarwal, Keshav ;
Alam, Munazza K. ;
Batalha, Natalie M. ;
Batalha, Natasha E. .
NATURE, 2024, 626 (8001) :979-+
[34]   Rapid Vector-Based Peak Fitting and Resolution Enhancement for Correlation Analyses of Raman Hyperspectra [J].
Schulze, H. Georg ;
Rangan, Shreyas ;
Vardaki, Martha Z. ;
Blades, Michael W. ;
Turner, Robin F. B. ;
Piret, James M. .
APPLIED SPECTROSCOPY, 2023, 77 (08) :957-969
[35]   Critical Evaluation of Spectral Resolution Enhancement Methods for Raman Hyperspectra [J].
Schulze, H. Georg ;
Rangan, Shreyas ;
Vardaki, Martha Z. ;
Blades, Michael W. ;
Turner, Robin F. B. ;
Piret, James M. .
APPLIED SPECTROSCOPY, 2022, 76 (01) :61-80
[36]   Classification of Respiratory Syncytial Virus and Sendai Virus Using Portable Near-Infrared Spectroscopy and Chemometrics [J].
Song, Weiran ;
Wang, Hui ;
Power, Ultan F. ;
Rahman, Enayetur ;
Barabas, Judit ;
Huang, Jiandong ;
McLaughlin, James ;
Nugent, Chris ;
Maguire, Paul .
IEEE SENSORS JOURNAL, 2023, 23 (09) :9981-9989
[37]   Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution [J].
Trakoolwilaiwan, Thanawin ;
Behboodi, Bahareh ;
Lee, Jaeseok ;
Kim, Kyungsoo ;
Choi, Ji-Woong .
NEUROPHOTONICS, 2018, 5 (01)
[38]   High-order cumulant-based blind deconvolution of Raman spectra [J].
Yuan, JH ;
Hu, ZQ ;
Sun, JZ .
APPLIED OPTICS, 2005, 44 (35) :7595-7601
[39]   DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis [J].
Zhang, Xiaolei ;
Lin, Tao ;
Xu, Jinfan ;
Luo, Xuan ;
Ying, Yibin .
ANALYTICA CHIMICA ACTA, 2019, 1058 :48-57
[40]   A smart correction method for FTIR acquired response spectra of mid-infrared photovoltaic detectors [J].
Zhang, Yong-gang ;
Zhou, Hao ;
Yan, Quan ;
Wang, Xiao-zhen ;
Liu, Chang ;
Chen, Yi-qiao .
INFRARED PHYSICS & TECHNOLOGY, 2024, 141