Integrating supervised and unsupervised learning approaches to unveil critical process inputs

被引:1
作者
Papavasileiou, Paris [1 ,2 ]
Giovanis, Dimitrios G. [3 ]
Pozzetti, Gabriele [4 ]
Kathrein, Martin [4 ]
Czettl, Christoph [5 ]
Kevrekidis, Ioannis G. [6 ,7 ]
Boudouvis, Andreas G. [2 ]
Bordas, Stephane P. A. [1 ]
Koronaki, Eleni D. [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Natl Tech Univ Athens, Sch Chem Engn, 9 Heroon Polytech str,Zographos Campus, Attiki 15780, Greece
[3] Johns Hopkins Univ, Whiting Sch Engn, Dept Civil & Syst Engn, 3400 North Charles St, Baltimore, MD 21218 USA
[4] CERATIZIT Luxembourg Sarl, L-8201 Mamer, Luxembourg
[5] CERATIZIT Austria GmbH, A-6600 Reutte, Austria
[6] Johns Hopkins Univ, Whiting Sch Engn, Dept Chem & Biomol Engn, 3400 North Charles St, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Whiting Sch Engn, Dept Appl Math & Stat, 3400 North Charles St, Baltimore, MD 21218 USA
关键词
Critical parameters; Machine learning; Industrial process; Data-driven approaches; Chemical vapor deposition; Shapley values; CHEMICAL-VAPOR-DEPOSITION; MULTIPLE STATIONARY; HARD COATINGS; CVD REACTOR; MODEL; SELECTION; FILMS; PERFORMANCE; MECHANISMS; REGRESSION;
D O I
10.1016/j.compchemeng.2024.108857
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study introduces a machine learning framework tailored to large-scale industrial processes characterized by a plethora of numerical and categorical inputs. The framework aims to (i) discern critical parameters that influence the output and (ii) generate accurate out-of-sample qualitative and quantitative predictions of production outcomes. Specifically, we address the pivotal question of the significance of each input in shaping the process outcome, using an industrial Chemical Vapor Deposition (CVD) process as an example. The initial objective involves merging subject matter expertise and clustering techniques exclusively on the process output, here, coating thickness measurements at various positions in the reactor. This approach identifies groups of production runs that share similar qualitative characteristics, such as film mean thickness and standard deviation. In particular, the differences of the outcomes represented by the different clusters can be attributed to differences in specific inputs, indicating that these inputs are potentially critical to the production outcome. Shapley value analysis corroborates the formed hypotheses. Leveraging this insight, we subsequently implement supervised classification and regression methods using the identified critical process inputs. The proposed methodology proves to be valuable in scenarios with a multitude of inputs and insufficient data for the direct application of deep learning techniques, providing meaningful insights into the underlying processes.
引用
收藏
页数:10
相关论文
共 74 条
  • [1] Deep Learning for Classification of Profit-Based Operating Regions in Industrial Processes
    Agarwal, Piyush
    Tamer, Melih
    Sahraei, M. Hossein
    Budman, Hector
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (06) : 2378 - 2395
  • [2] Aggarwal C.C.., 2018, Neural Networks and Deep Learning, P512, DOI [10.1201/b22400-15, DOI 10.1201/B22400-15, 10.1007/978-3-319-94463-0, DOI 10.1007/978-3-319-94463-0]
  • [3] Ankerst M., 1999, SIGMOD Record, V28, P49, DOI 10.1145/304181.304187
  • [4] Combined Macro/Nanoscale Investigation of the Chemical Vapor Deposition of Fe from Fe(CO)5
    Aviziotis, Ioannis G.
    Duguet, Thomas
    Vahlas, Constantin
    Boudouvis, Andreas G.
    [J]. ADVANCED MATERIALS INTERFACES, 2017, 4 (18):
  • [5] Multiscale modeling and experimental analysis of chemical vapor deposited aluminum films: Linking reactor operating conditions with roughness evolution
    Aviziotis, Ioannis G.
    Cheimarios, Nikolaos
    Duguet, Thomas
    Vahlas, Constantin
    Boudouvis, Andreas G.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 155 : 449 - 458
  • [6] Experimental study of the effect of coating thickness and substrate roughness on tool wear during turning
    Bar-Hen, M.
    Etsion, I.
    [J]. TRIBOLOGY INTERNATIONAL, 2017, 110 : 341 - 347
  • [7] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [8] The metal-organic chemical vapor deposition and properties of III-V antimony-based semiconductor materials
    Biefeld, RM
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 36 (04) : 105 - 142
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Breiman L., 1984, CLASSIFICATION REGRE, V37, P237, DOI DOI 10.1201/9781315139470