IGUANe: A 3D generalizable CycleGAN for multicenter harmonization of brain MR images

被引:3
作者
Roca, Vincent [1 ]
Kuchcinski, Gregory [1 ,2 ,3 ]
Pruvo, Jean-Pierre [1 ,2 ,3 ]
Manouvriez, Dorian [1 ]
Lopes, Renaud [1 ,2 ,4 ]
机构
[1] Univ Lille, Inst Pasteur Lille, CNRS, INSERM,CHU Lille,US UAR PLBS 41 2014, F-59000 Lille, France
[2] Univ Lille, INSERM, CHU Lille, U1172 LilNCog Lille Neurosci & Cognit, F-59000 Lille, France
[3] CHU Lille, Dept Neuroradiol, F-59000 Lille, France
[4] CHU Lille, Dept Med Nucl, F-59000 Lille, France
基金
美国国家卫生研究院;
关键词
Brain MRI; Harmonization; Multisite; Brain age; Alzheimer; Image synthesis; CORTICAL THICKNESS; AGE; SUBJECT; DISEASE;
D O I
10.1016/j.media.2024.103388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In MRI studies, the aggregation of imaging data from multiple acquisition sites enhances sample size but may introduce site-related variabilities that hinder consistency in subsequent analyses. Deep learning methods for image translation have emerged as a solution for harmonizing MR images across sites. In this study, we introduce IGUANe (Image Generation with Unified Adversarial Networks), an original 3D model that leverages the strengths of domain translation and straightforward application of style transfer methods for multicenter brain MR image harmonization. IGUANe extends CycleGAN by integrating an arbitrary number of domains for training through a many-to-one architecture. The framework based on domain pairs enables the implementation of sampling strategies that prevent confusion between site-related and biological variabilities. During inference, the model can be applied to any image, even from an unknown acquisition site, making it a universal generator for harmonization. Trained on a dataset comprising T1-weighted images from 11 different scanners, IGUANe was evaluated on data from unseen sites. The assessments included the transformation of MR images with traveling subjects, the preservation of pairwise distances between MR images within domains, the evolution of volumetric patterns related to age and Alzheimer's disease (AD), and the performance in age regression and patient classification tasks. Comparisons with other harmonization and normalization methods suggest that IGUANe better preserves individual information in MR images and is more suitable for maintaining and reinforcing variabilities related to age and AD. Future studies may further assess IGUANe in other multicenter contexts, either using the same model or retraining it for applications to different image modalities. Codes and the trained IGUANe model are available at https://github.com/RocaVincent/iguane_ harmonization.git.
引用
收藏
页数:19
相关论文
共 83 条
[1]   Multimodal Neuroimaging in Schizophrenia: Description and Dissemination [J].
Aine, C. J. ;
Bockholt, H. J. ;
Bustillo, J. R. ;
Canive, J. M. ;
Caprihan, A. ;
Gasparovic, C. ;
Hanlon, F. M. ;
Houck, J. M. ;
Jung, R. E. ;
Lauriello, J. ;
Liu, J. ;
Mayer, A. R. ;
Perrone-Bizzozero, N. I. ;
Posse, S. ;
Stephen, J. M. ;
Turner, J. A. ;
Clark, V. P. ;
Calhoun, Vince D. .
NEUROINFORMATICS, 2017, 15 (04) :343-364
[2]   Unsupervised Domain Adaptation via CycleGAN for White Matter Hyperintensity Segmentation in Multicenter MR Images [J].
Alberto Palladino, Julian ;
Fernandez Slezak, Diego ;
Ferrante, Enzo .
16TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11583
[3]  
Ba J, 2014, ACS SYM SER
[4]   INTRACLASS CORRELATION COEFFICIENT AS A MEASURE OF RELIABILITY [J].
BARTKO, JJ .
PSYCHOLOGICAL REPORTS, 1966, 19 (01) :3-&
[5]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[6]   Deep Generative Medical Image Harmonization for Improving Cross-Site Generalization in Deep Learning Predictors [J].
Bashyam, Vishnu M. ;
Doshi, Jimit ;
Erus, Guray ;
Srinivasan, Dhivya ;
Abdulkadir, Ahmed ;
Singh, Ashish ;
Habes, Mohamad ;
Fan, Yong ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Voelzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel H. ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John C. ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan M. ;
Bryan, Nick R. ;
Wittfeld, Katharina ;
Bulow, Robin ;
Wolk, David A. ;
Shou, Haochang ;
Nasrallah, Ilya M. ;
Davatzikos, Christos .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :908-916
[7]   MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide [J].
Bashyam, Vishnu M. ;
Erus, Guray ;
Doshi, Jimit ;
Habes, Mohamad ;
Nasralah, Ilya ;
Truelove-Hill, Monica ;
Srinivasan, Dhivya ;
Mamourian, Liz ;
Pomponio, Raymond ;
Fan, Yong ;
Launer, Lenore J. ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Volzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan ;
Bryan, R. Nick ;
Wolk, David A. ;
Shou, Haochang ;
Davatzikos, Christos .
BRAIN, 2020, 143 :2312-2324
[8]   SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining [J].
Billot, Benjamin ;
Greve, Douglas N. ;
Puonti, Oula ;
Thielscher, Axel ;
Van Leemput, Koen ;
Fischl, Bruce ;
Dalca, Adrian V. ;
Iglesias, Juan Eugenio .
MEDICAL IMAGE ANALYSIS, 2023, 86
[9]   ImUnity: A generalizable VAE-GAN solution for multicenter MR image harmonization [J].
Cackowski, Stenzel ;
Barbier, Emmanuel L. ;
Dojat, Michel ;
Christen, Thomas .
MEDICAL IMAGE ANALYSIS, 2023, 88
[10]   Harmonizing functional connectivity reduces scanner effects in community detection [J].
Chen, Andrew A. ;
Srinivasan, Dhivya ;
Pomponio, Raymond ;
Fan, Yong ;
Nasrallah, Ilya M. ;
Resnick, Susan M. ;
Beason-Held, Lori L. ;
Davatzikos, Christos ;
Satterthwaite, Theodore D. ;
Bassett, Dani S. ;
Shinohara, Russell T. ;
Shou, Haochang .
NEUROIMAGE, 2022, 256