Novel approach of antistatic PET/nano-TiO2 composites via marangoni effect

被引:2
作者
Xu, Zhongtao [1 ]
Li, Zefeng [1 ]
Luo, Peidong [2 ]
Liang, Yuan [1 ]
Wan, Hai [1 ]
Jin, Wenbin [1 ]
Huang, Shuohan [1 ]
Chen, Yuwei [3 ]
Wang, Yanping [1 ]
He, Yong [1 ]
Xia, Yumin [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, Innovat Ctr Text Sci & Technol, Engn Res Ctr Tech Text,State Key Lab Modificat Che, Shanghai, Peoples R China
[2] Ningbo DXC New Mat Technolog Co Ltd, Ningbo, Peoples R China
[3] Qingdao Univ Sci & Technol, Key Lab Rubber Plast, Shandong Prov Key Lab Rubber & Plast, Minist Educ, Qingdao, Peoples R China
关键词
PET composite; Antistatic; Marangoni effect; TiO2; whiskers; TIO2; THIN-FILMS; CONDUCTIVE POLYMER COMPOSITES; OPTICAL-PROPERTIES; SURFACE; LAYER; POLYETHYLENE; INTERFACE; BLENDS; GROWTH; OXIDE;
D O I
10.1016/j.colsurfa.2024.135966
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To meet the industry's evolving demands, it is essential to develop composite surfaces with antistatic properties, reduce production costs, and maintain the integrity of the matrix material. We present an innovative and straightforward method for creating antistatic PET films via the floating interfacial assembly technique. By utilizing high-aspect-ratio, conductive TiO2, which boasts excellent whiteness as the nanofiller, we leverage marangoni flow-driven by surface tension gradients-to facilitate the self-assembly of TiO2 at the interface. We explored the underlying mechanism through a suite of analytical techniques and compared the properties of the resulting composites with those fabricated using traditional melt blending and surface scraping methods. Our findings indicated that a fully conductive TiO2@SEBS coating can be realized with just 10 wt% of conductive TiO2. At this loading, the conductive TiO2 forms a dense, uniform layer on the surface of the nanocomposite, ensuring cohesive aggregation. Remarkably, even though the conductive layer is microns thin, the surface resistance of the modified PET film is significantly reduced to 106 Omega/sq. Thus, this approach not only decreases the amount of conductive TiO2 used but also preserves the inherent properties of the substrate. This research expands the possible uses of PET and shows great potential in antistatic packaging, representing a notable advancement in materials science.
引用
收藏
页数:11
相关论文
共 67 条
[1]   Incorporated TiO2 nanoparticles into PVC/PMMA polymer blend for enhancing the optical and electrical/dielectric properties: Hybrid nanocomposite films for flexible optoelectronic devices [J].
Al-Muntaser, A. ;
Abo-Dief, Hala M. ;
Tarabiah, A. E. ;
Alzahrani, Eman ;
Alsalmah, Hessa A. ;
Alharbi, Zeinab M. ;
Pashameah, Rami Adel ;
Saeed, Abdu .
POLYMER ENGINEERING AND SCIENCE, 2023, 63 (11) :3684-3697
[2]   Progress in preparation, processing and applications of polyaniline [J].
Bhadra, Sambhu ;
Khastgir, Dipak ;
Singha, Nikhil K. ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2009, 34 (08) :783-810
[3]   Utilization of polymer degradation to modify electrical properties of poly(L-lactide)/poly(methyl methacrylate)/carbon filler composites [J].
Buys, Yose Fachmi ;
Aoyama, Takehiko ;
Akasaka, Shuichi ;
Asai, Shigeo ;
Sumita, Masao .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (01) :200-205
[4]   Advances in Responsively Conductive Polymer Composites and Sensing Applications [J].
Chen, Jianwen ;
Zhu, Yutian ;
Huang, Jinrui ;
Zhang, Jiaoxia ;
Pan, Duo ;
Zhou, Juying ;
Ryu, Jong E. ;
Umar, Ahmad ;
Guo, Zhanhu .
POLYMER REVIEWS, 2021, 61 (01) :157-193
[5]   Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure [J].
Chen, Jianwen ;
Cui, Xihua ;
Sui, Kunyan ;
Zhu, Yutian ;
Jiang, Wei .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 140 :99-105
[6]   Conductive Mechanism of Antistatic Poly(ethylene terephthalate)/ZnOw Composites [J].
Chen, Ke ;
Xiong, Chuanxi ;
Li, Liubin ;
Zhou, Liu ;
Lei, Youan ;
Dong, Lijie .
POLYMER COMPOSITES, 2009, 30 (02) :226-231
[7]   Permanently antistatic and high transparent PMMA terpolymer: Compatilizer, antistatic agent, and the antistatic mechanism [J].
Chen, Si ;
Zhou, Bo ;
Ma, Meng ;
Shi, Yanqin ;
Wang, Xu .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2018, 29 (06) :1788-1794
[8]   A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions [J].
Chen, Tianjiao ;
Wu, Guanzheng ;
Panahi-Sarmad, Mahyar ;
Wu, Yutong ;
Xu, Runxin ;
Cao, Shaojie ;
Xiao, Xueliang .
COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 227
[9]   A high-performance composite CDs@Cu-HQCA/TiO2 flower photocatalyst: Synergy of complex-sensitization, TiO2-morphology control and carbon dot-surface modification [J].
Chen, Yunning ;
Yang, Lu ;
Sun, Yingnan ;
Guan, Renquan ;
Liu, Di ;
Zhao, Jie ;
Shang, Qingkun .
CHEMICAL ENGINEERING JOURNAL, 2022, 436
[10]   Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture [J].
Chi, Won Seok ;
Hwang, Sinyoung ;
Lee, Seung-Joon ;
Park, Sungmin ;
Bae, Youn-Sang ;
Ryu, Du Yeol ;
Kim, Jong Hak ;
Kim, Jinsoo .
JOURNAL OF MEMBRANE SCIENCE, 2015, 495 :479-488