QUASI-MONTE CARLO AND DISCONTINUOUS GALERKIN

被引:0
作者
Kaarnioja, Vesa [1 ]
Rupp, Andreas [2 ]
机构
[1] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, DE-14195 Berlin, Germany
[2] Saarland Univ, Fac Math & Comp Sci, Dept Math, DE-66123 Saarbrucken, Germany
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2024年 / 61卷
关键词
diffusion equation; discontinuous Galerkin; quasi-Monte Carlo; random coefficient; LATTICE RULES; HP-VERSION; INTEGRATION; EQUATIONS; CONSTRUCTION; ALGORITHMS;
D O I
10.1553/etna_vol60s589
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider the development of tailored quasi-Monte Carlo (QMC) cubatures for non-conforming discontinuous Galerkin (DG) approximations of elliptic partial differential equations (PDEs) with random coefficients. We consider both the affine and uniform and the lognormal models for the input random field and investigate the use of QMC cubatures to approximate the expected value of the PDE response subject to input uncertainty. In particular, we prove that the resulting QMC convergence rate for DG approximations behaves in the same way as if continuous finite elements were chosen. Notably, the parametric regularity bounds for DG, which are developed in this work, are also useful for other methods such as sparse grids. Numerical results underline our analytical findings.
引用
收藏
页码:589 / 617
页数:29
相关论文
共 56 条
  • [11] Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion
    Dick, Josef
    Gantner, Robert N.
    Le Gia, Quoc T.
    Schwab, Christoph
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) : 144 - 172
  • [12] Higher Order Quasi-Monte Carlo Integration for Holomorphic, Parametric Operator Equations
    Dick, Josef
    Le Gia, Quoc T.
    Schwab, Christoph
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 48 - 79
  • [13] HIGHER ORDER QMC PETROV-GALERKIN DISCRETIZATION FOR AFFINE PARAMETRIC OPERATOR EQUATIONS WITH RANDOM FIELD INPUTS
    Dick, Josef
    Kuo, Frances Y.
    Le Gia, Quoc T.
    Nuyens, Dirk
    Schwab, Christoph
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2676 - 2702
  • [14] High-dimensional integration: The quasi-Monte Carlo way
    Dick, Josef
    Kuo, Frances Y.
    Sloan, Ian H.
    [J]. ACTA NUMERICA, 2013, 22 : 133 - 288
  • [15] DiPietro DA, 2012, MATH APPL-BERLIN, V69, P1, DOI 10.1007/978-3-642-22980-0
  • [16] Dolejsi V, 2015, SPR SER COMPUT MATH, V48, P1, DOI 10.1007/978-3-319-19267-3
  • [17] Quasi-Monte Carlo Finite Element Analysis for Wave Propagation in Heterogeneous Random Media
    Ganesh, M.
    Kuo, Frances Y.
    Sloan, Ian H.
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (01) : 106 - 134
  • [18] GANTNER R. N., 2018, Springer Proc. Math. Stat., V241, P249, DOI [10.1007/978-3-319-91436-7\_13, DOI 10.1007/978-3-319-91436-713]
  • [19] GANTNER R. N., 2018, CONT COMPUTATIONAL M, V2, P373
  • [20] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915