Dynamics and Control of Humanoid Robots: A Geometrical Approach

被引:0
作者
Ivancevic V.G. [1 ]
Ivancevic T.T. [2 ]
机构
[1] Land Operation Division, Defence Science and Technology Organisation, Edinburgh
[2] QLIWW IP Pty Ltd., Tesla Science Evolution Institute, Adelaide
来源
Paladyn | 2010年 / 1卷 / 04期
关键词
Humanoid robots; Lagrangian and Hamiltonian formalisms; Neural-like humanoid control; Time-dependent biodynamics;
D O I
10.2478/s13230-011-0007-7
中图分类号
学科分类号
摘要
This paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the 'covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated 'humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated 'humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-Autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. © Vladimir G. Ivancevic et al. 2010.
引用
收藏
页码:204 / 218
页数:14
相关论文
共 25 条
[1]  
Ivancevic V., Symplectic Rotational Geometry in Human Biomechanics, SIAM Rev, 46, 3, pp. 455-474, (2004)
[2]  
Ivancevic V., Ivancevic T., Human-Like Biomechanics: A Unified Mathematical Approach to Human Biomechanics and Humanoid Robotics, (2005)
[3]  
Ivancevic V., Sharma S., Complexity in Human Bio-Mechanics. IJHR, 5, 4, pp. 679-698, (2008)
[4]  
Ivancevic V., Ivancevic T., Human versus Humanoid Biodynamics, IJHR, 5, 4, pp. 699-713, (2008)
[5]  
Arnold V.I., Mathematical Methods of Classical Mechanics, (1978)
[6]  
Abraham R., Marsden J., Foundations of Mechanics, (1978)
[7]  
Marsden J.E., Ratiu T.S., Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, (1999)
[8]  
Ivancevic V., LieLagrangian model for realistic human biodynamics, IJHR, 3, 2, pp. 205-218, (2006)
[9]  
Ivancevic V., Ivancevic T., Applied Differential Geometry: A Modern Introduction. World Scientific Singapore, (2007)
[10]  
Ivancevic V., Generalized Hamiltonian Biodynamics and Topology Invariants of Humanoid Robots, IJMMS, 31, 9, pp. 555-565, (2002)