Development of a Passive Sampling Technique for Measuring Pesticides in Waters and Soils

被引:0
作者
Li, Yanying [1 ]
Chen, Chang-Er L. [1 ]
Chen, Wei [1 ]
Chen, Jingwen [2 ]
Cai, Xiyun [2 ]
Jones, Kevin C. [1 ]
Zhang, Hao [1 ]
机构
[1] Lancaster Environment Centre, Lancaster University, Lancaster,LA1 4YQ, United Kingdom
[2] Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian,116024, China
来源
Journal of Agricultural and Food Chemistry | 2019年 / 67卷 / 22期
关键词
Ionic strength - Process control - Hydrophilicity - Resins - Sediments - Thin films - Pesticides;
D O I
暂无
中图分类号
学科分类号
摘要
It is essential to monitor pesticides in the environment to help ensure water and soil quality. The diffusive gradients in thin-films (DGT) technique can measure quantitative in situ labile (available) concentrations of chemicals in water, soil, and sediments. This study describes the systematic development of the DGT technique for nine current pesticides, selected to be representative of different classes with a wide range of properties, with two types of resins (HLB (hydrophilic-lipophilic-balanced) and XAD 18) as binding layer materials. The masses of pesticides accumulated by DGT devices were proportional to the deployment time and in inverse proportion to the thickness of the diffusive layer, in line with DGT theoretical predictions. DGT with both resin gels were tested in the laboratory for the effects of typical environmental factors on the DGT measurements. DGT performance was independent of the following: pH in the range of 4.7-8.2; dissolved organic matter concentrations -1 and ionic strength from 0.01 to 0.25 M, although it was slightly affected at 0.5 M in some cases. This confirms DGT as a sampler suitable for controlled studies of environmental processes affecting pesticides. Field applications of DGT to measure pesticides in situ in waters and controlled laboratory measurements on five different soils (prepared at fixed soil/water ratios) demonstrated DGT is a suitable tool for environmental monitoring in waters and for investigating chemical processes in soils. © 2019 American Chemical Society.
引用
收藏
页码:6397 / 6406
相关论文
empty
未找到相关数据