Mobility analysis of two limited-DOF parallel mechanisms using geometric Algebra

被引:4
作者
机构
[1] Mechatronic Institute, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang
来源
Li, Qinchuan | 1600年 / Springer Verlag卷 / 8917期
关键词
Geometric algebra; Limited-DOF parallel mechanism; Mobility analysis;
D O I
10.1007/978-3-319-13966-1_2
中图分类号
学科分类号
摘要
Mobility analysis determines the number of degree of freedom (DOF) and the motion pattern of a mechanism. Geometric algebra is applied to mobility analysis of two limited-DOF parallel mechanisms (PMs). Based on the outer product in geometric algebra, this method has the advantage in terms of geometric interpretation. It also can simplify the calculation because only addition and multiplication are involved during the whole computation. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:13 / 22
页数:9
相关论文
共 19 条
  • [1] Clavel R., A fast robot with parallel geometry, Proc. Int. Symposium on Industrial Robots, (1988)
  • [2] Wahl J., Articulated tool head, Google Patents, (2002)
  • [3] Neumann K.-E., Robot, Google Patents, (1988)
  • [4] Hestenes D., New Foundations for Classical Mechanics, (1999)
  • [5] Clifford W.K., On the Classification of Geometric Algebras, pp. 397-401, (1882)
  • [6] Clifford W.K., Elements of Dynamic: An Introduction to the Study of Motion and Rest in Solid and Fluid Bodies, (1878)
  • [7] Clifford W.K., On the space-theory of matter, Proceedings of the Cambridge Philosophical Society, (1876)
  • [8] Hitzer E., Helmstetter J., Ablamowicz R., Square roots of–1 in real Clifford algebras, Quaternion and Clifford Fourier Transforms and Wavelets, (2013)
  • [9] Aristidou A., Lasenby J., Inverse kinematics solutions using conformal geometric algebra, Guide to Geometric Algebra in Practice, (2011)
  • [10] Aristidou A., Lasenby J., FABRIK: A fast, iterative solver for the inverse kinematics problem, Graphical Models, 73, pp. 243-260, (2011)