Structure and Intensity Unbiased Translation for 2D Medical Image Segmentation

被引:0
作者
Zhang, Tianyang [1 ]
Zheng, Shaoming [2 ]
Cheng, Jun [3 ]
Jia, Xi [1 ]
Bartlett, Joseph [1 ,4 ]
Cheng, Xinxing [1 ]
Qiu, Zhaowen [5 ]
Fu, Huazhu [6 ]
Liu, Jiang [7 ]
Leonardis, Ales [1 ]
Duan, Jinming [1 ,8 ,9 ]
机构
[1] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
[2] Imperial Coll London, London SW7 2AZ, England
[3] ASTAR, Inst Infocomm Res, Singapore 138632, Singapore
[4] Univ Melbourne, Melbourne, Vic 3052, Australia
[5] Northeast Forestry Univ, Harbin 150040, Peoples R China
[6] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[7] Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
[8] Alan Turing Inst, London NW1 2DB, England
[9] Univ Manchester, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Image segmentation; Deformation; Generative adversarial networks; Biomedical imaging; Task analysis; Training; Magnetic resonance imaging; Cardiovascular imaging (CMR); diffeomorphic image registration; generative adversarial network; medical image segmentation; medical image translation; optical coherence tomography (OCT); NETWORK;
D O I
10.1109/TPAMI.2024.3434435
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data distribution gaps often pose significant challenges to the use of deep segmentation models. However, retraining models for each distribution is expensive and time-consuming. In clinical contexts, device-embedded algorithms and networks, typically unretrainable and unaccessable post-manufacture, exacerbate this issue. Generative translation methods offer a solution to mitigate the gap by transferring data across domains. However, existing methods mainly focus on intensity distributions while ignoring the gaps due to structure disparities. In this paper, we formulate a new image-to-image translation task to reduce structural gaps. We propose a simple, yet powerful Structure-Unbiased Adversarial (SUA) network which accounts for both intensity and structural differences between the training and test sets for segmentation. It consists of a spatial transformation block followed by an intensity distribution rendering module. The spatial transformation block is proposed to reduce the structural gaps between the two images. The intensity distribution rendering module then renders the deformed structure to an image with the target intensity distribution. Experimental results show that the proposed SUA method has the capability to transfer both intensity distribution and structural content between multiple pairs of datasets and is superior to prior arts in closing the gaps for improving segmentation.
引用
收藏
页码:10060 / 10075
页数:16
相关论文
共 73 条
[1]   Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis [J].
Abu-Srhan, Alaa ;
Almallahi, Israa ;
Abushariah, Mohammad A. M. ;
Mahafza, Waleed ;
Al-Kadi, Omar S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
[2]   Unsupervised Medical Image Translation Using Cycle-MedGAN [J].
Armanious, Karim ;
Jiang, Chenming ;
Abdulatif, Sherif ;
Kuestner, Thomas ;
Gatidis, Sergios ;
Yang, Bin .
2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
[3]   MedGAN: Medical image translation using GANs [J].
Armanious, Karim ;
Jiang, Chenming ;
Fischer, Marc ;
Kuestner, Thomas ;
Nikolaou, Konstantin ;
Gatidis, Sergios ;
Yang, Bin .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
[4]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[5]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[6]   Deep Generative Medical Image Harmonization for Improving Cross-Site Generalization in Deep Learning Predictors [J].
Bashyam, Vishnu M. ;
Doshi, Jimit ;
Erus, Guray ;
Srinivasan, Dhivya ;
Abdulkadir, Ahmed ;
Singh, Ashish ;
Habes, Mohamad ;
Fan, Yong ;
Masters, Colin L. ;
Maruff, Paul ;
Zhuo, Chuanjun ;
Voelzke, Henry ;
Johnson, Sterling C. ;
Fripp, Jurgen ;
Koutsouleris, Nikolaos ;
Satterthwaite, Theodore D. ;
Wolf, Daniel H. ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Morris, John C. ;
Albert, Marilyn S. ;
Grabe, Hans J. ;
Resnick, Susan M. ;
Bryan, Nick R. ;
Wittfeld, Katharina ;
Bulow, Robin ;
Wolk, David A. ;
Shou, Haochang ;
Nasrallah, Ilya M. ;
Davatzikos, Christos .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (03) :908-916
[7]   Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J].
Beg, MF ;
Miller, MI ;
Trouvé, A ;
Younes, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) :139-157
[8]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[9]  
Bhattacharyya A., 1943, BULL CALCUTTA MATH S, V35, P99, DOI DOI 10.1038/157869B0
[10]   Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving [J].
Cai, Mu ;
Zhang, Hong ;
Huang, Huijuan ;
Geng, Qichuan ;
Li, Yixuan ;
Huang, Gao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :13910-13920