One-pot shear synthesis of gallium, indium, and indium-bismuth nanofluids: An experimental and computational study

被引:0
作者
机构
[1] National Renewable Energy Laboratory, Golden, CO 80401
来源
Starace, A.K. (anne.starace@nrel.gov) | 1600年 / American Society of Mechanical Engineers (ASME), United States卷 / 04期
关键词
Adsorption mechanism - Alloy nanoparticle - Bulk alloys - Computational studies - Indium particles - Nanofluids - Oleylamine - Poly-alpha-olefins;
D O I
10.1115/1.4027854
中图分类号
学科分类号
摘要
Nanofluids are often proposed as advanced heat transfer fluids. In this work, using a one-step nanoemulsification method, we synthesize gallium, indium, and indium-bismuth nanofluids in poly-alpha-olefin (PAO). The size distributions of the resulting nanoparticles are analyzed using transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis of the alloy nanoparticles indicates that their composition is the same as that of the bulk alloy. It was found that oleylamine stabilizes both gallium and indium particles in PAO, while oleic acid is effective for gallium particles only. The microscopic adsorption mechanism of surfactants on gallium and indium surfaces is investigated using density functional theory (DFT) to understand why oleylamine is effective for both metals while oleic acid is effective for gallium only. © 2013 by ASME.
引用
收藏
相关论文
共 18 条
[1]  
Taylor R., Coulombe S., Otanicar T., Phelan P., Gunawan A., Lv W., Rose-Ngarten G., Prasher R., Tyagi H., Small particles, big impacts: A review of the diverse applications of nanofluids, J. Appl. Phys., 113, 1, (2013)
[2]  
Beck M.P., Yuan Y., Warrier P., Teja A.S., The effect of particle size on the thermal conductivity of alumina nanofluids, J. Nanopart. Res., 11, 5, pp. 1129-1136, (2008)
[3]  
Saidur R., Kazi S.N., Hossain M.S., Rahman M.M., Mohammed H.A., A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems, Renewable and Sustainable Energy Rev., 15, 1, pp. 310-323, (2011)
[4]  
Shaikh S., Lafdi K., Ponnappan R., Thermal conductivity improvement in carbon nanoparticle doped pao oil: An experimental study, J. Appl. Phys., 101, 6, (2007)
[5]  
Kang H.U., Kim S.H., Oh J.M., Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Experimental Heat Transfer, 19, 3, pp. 181-191, (2006)
[6]  
Zhang X., Gu H., Fujii M., Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nano-particles, J. Appl. Phys., 100, 4, (2006)
[7]  
Otanicar T.P., Patrick P.E., Prasher R.S., Rosengarten G., Taylor R.A., Nanofluid-based direct absorption solar collector, J. Renewable Sustainable Energy, 2, 3, (2010)
[8]  
Otanicar T.P., Phelan P.E., Taylor R.A., Tyagi H., Spatially varying extinction coefficient for direct absorption solar thermal collector optimization, ASME J. Sol. Energy Eng., 133, 2, (2011)
[9]  
Han Z.H., Cao F.Y., Yang B., Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids, Appl. Phys. Lett., 92, 24, (2008)
[10]  
Chen H.J., Wen D., Ultrasonic-aided fabrication of gold nanofluids, Nanoscale Res. Lett., 6, (2011)