Investigating water structure and dynamics at metal/ water interfaces from classical, ab initio to machine learning molecular dynamics

被引:0
|
作者
Wang, Fei-Teng [1 ]
Cheng, Jun [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChem, Xiamen 361005, Peoples R China
[2] IKKEM, Lab AI Electrochem AI4EC, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Inst Artificial Intelligence, Xiamen 361005, Peoples R China
关键词
metal/water interfaces; water exchange dynamics; structure and dy-namics; LIQUID WATER; SIMULATION; ELECTRODES; 1ST-PRINCIPLES; SPECTROSCOPY; ORIENTATION; SURFACES; PT(111); CHARGE; FLAT;
D O I
10.1016/j.coelec.2024.101605
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-water interfaces are central to a wide range of crucial processes, including energy storage, energy conversion, and corrosion. Understanding the detailed structure and dynamics of water molecules at these interfaces is essential for unraveling the fundamental mechanisms driving these processes at the molecular level. Experimentally, a detection of interfacial structure and dynamics with high temporal and spatial resolution is lacking. The advances in machine learning molecular dynamics are offering an opportunity to address this issue with high accuracy and efficiency. To offer insights into the structure and dynamics, this review summarizes the progress made in determining the structure and dynamics of interfacial water molecules using molecular dynamics simulations. The possible application of machine learning molecular dynamics to address the fundamental challenges of simulating metal/water interfaces are also discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Dielectric Properties of Nanoconfined Water from Ab Initio Thermopotentiostat Molecular Dynamics
    Deissenbeck, Florian
    Wippermann, Stefan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (03) : 1035 - 1043
  • [42] New Insight into Uracil Stacking in Water from ab Initio Molecular Dynamics
    Milovanovic, Branislav
    Kojic, Marko
    Petkovic, Milena
    Etinski, Mihajlo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (05) : 2621 - 2632
  • [43] Adaptive machine learning framework to accelerate ab initio molecular dynamics
    Botu, Venkatesh
    Ramprasad, Rampi
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1074 - 1083
  • [44] Water structure, dynamics and reactivity on a TiO2-nanoparticle surface: new insights from ab initio molecular dynamics
    Grote, Fredrik
    Lyubartsev, Alexander P.
    NANOSCALE, 2022, 14 (44) : 16536 - 16547
  • [45] Controlling the shape and flexibility of arylamides: A combined ab initio, ab initio molecular dynamics, and classical molecular dynamics study
    Pophristic, V
    Vemparala, S
    Ivanov, I
    Liu, ZW
    Klein, ML
    DeGrado, WF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (08): : 3517 - 3526
  • [46] CO2 activation at Au(110)-water interfaces: An ab initio molecular dynamics study
    Qin, Xueping
    Vegge, Tejs
    Hansen, Heine Anton
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (13):
  • [47] Classical and ab initio molecular dynamics of quartz surfaces
    MacKerell, Alexander D., Jr.
    Lopes, Pedro E. M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1333 - U1334
  • [48] Structure and dynamics of the Li+ ion in water, methanol and acetonitrile solvents: ab initio molecular dynamics simulations
    Rana, Reman
    Ali, Sk. Musharaf
    Maity, Dilip K.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (45) : 31382 - 31395
  • [49] Ab initio molecular dynamics of metal surfaces
    Walker, BG
    Molteni, C
    Marzari, N
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (26) : S2575 - S2596
  • [50] Electron hydration dynamics in water clusters:: A direct ab initio molecular dynamics approach
    Tachikawa, Hiroto
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (14):