Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries

被引:3
|
作者
Liu, Sijie [1 ,2 ,3 ]
Zhou, Le [4 ]
Zhong, Tingjun [5 ]
Wu, Xin [3 ]
Neyts, Kristiaan [4 ]
机构
[1] Tsinghua Univ Shenzhen, Res Inst, Shenzhen 518000, Guangdong, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[4] Hong Kong Univ Sci & Technol, SKLADT, Clear Water Bay, Hong Kong, Peoples R China
[5] China Agr Univ, Coll Sci, Dept Chem, Beijing 100083, Peoples R China
关键词
composite solid-state electrolyte; polymers; solid-state lithium batteries; sulfides; ION-CONDUCTING ELECTROLYTES; GEL POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; THIO-LISICON; LI0.35LA0.55TIO3; CERAMICS; HYBRID ELECTROLYTES; LI2S-P2S5; GLASSES; INFINITE STRAIGHT; HIGH-PERFORMANCE; FILM;
D O I
10.1002/aenm.202403602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review introduces solid electrolytes based on sulfide/polymer composites which are used in all-solid-state lithium batteries, describing the use of polymers as plasticizer, the lithium-ion conductive channel, the preparation methods of solid-state electrolytes (SSEs), including dry methods and wet methods with their advantages and disadvantages. In addition, the physicochemical stability of sulfide/polymer composite based solid-state electrolytes is analyzed. The sulfide/polymer composite based solid-state electrolyte can be utilized in lithium metal or lithium sulfur batteries. However, there are still many problems left to be solved in practical applications of these solid-state electrolytes. In this review, several solutions are explored. Firstly, the ultra-long life cycle of batteries can be achieved by thinning the composite electrolyte. Secondly, when sulfur is applied as the positive electrode, the thinning electrolyte can reduce polarization and other problems. Finally, an integrated battery is employed to reduce the interface impedance. By addressing these aspects, the review aims to provide valuable insights into the future development of high-performance solid-state electrolytes in lithium battery technology.
引用
收藏
页数:48
相关论文
共 50 条
  • [41] Engineering the interface of organic/inorganic composite solid-state electrolyte by amino effect for all-solid-state lithium batteries
    Sun, Yan-Yun
    Zhang, Qi
    Fan, Lei
    Han, Dian-Dian
    Li, Li
    Yan, Lei
    Hou, Pei -Yu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 (877-885) : 877 - 885
  • [42] Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes
    Jung, Yoon Seok
    Oh, Dae Yang
    Nam, Young Jin
    Park, Kern Ho
    ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) : 472 - 485
  • [43] Recent Advances and Perspectives of Air Stable Sulfide-Based Solid Electrolytes for All-Solid-State Lithium Batteries
    Li, Ping
    Ma, Zhihui
    Shi, Jie
    Han, Kun
    Wan, Qi
    Liu, Yongchang
    Qu, Xuanhui
    CHEMICAL RECORD, 2022, 22 (10)
  • [44] Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries
    Rajamani, Arunkumar
    Panneerselvam, Thamayanthi
    Abraham, Sona Elsin
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14): : 3185 - 3212
  • [45] Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for All-Solid-State Batteries
    Lee, Ji Eun
    Park, Kern-Ho
    Kim, Jin Chul
    Wi, Tae-Ung
    Ha, A. Reum
    Song, Yong Bae
    Oh, Dae Yang
    Woo, Jehoon
    Kweon, Seong Hyeon
    Yeom, Su Jeong
    Cho, Woosuk
    Kim, KyungSu
    Lee, Hyun-Wook
    Kwak, Sang Kyu
    Jung, Yoon Seok
    ADVANCED MATERIALS, 2022, 34 (16)
  • [46] High lithium ion conduction of sulfide glass-based solid electrolytes and their application to all-solid-state batteries
    Hayashi, Akitoshi
    Minami, Keiichi
    Tatsumisago, Masahiro
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (37-42) : 1919 - 1923
  • [47] Solid-State Electrolytes by Electrospinning Techniques for Lithium Batteries
    不详
    SMALL, 2024, 20 (32)
  • [48] Solid-State Electrolytes for Lithium-Air Batteries
    Qi, Xianhai
    Liu, Dapeng
    Yu, Haohan
    Fu, Zerui
    Zhang, Yu
    BATTERIES & SUPERCAPS, 2024,
  • [49] Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries
    Li, Yu
    Zhang, Dechao
    Xu, Xijun
    Wang, Zhuosen
    Liu, Zhengbo
    Shen, Jiadong
    Liu, Jun
    Zhu, Min
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 : 32 - 60
  • [50] All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport
    Wang, Changhong
    Adair, Keegan
    Sun, Xueliang
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (01): : 21 - 32