Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries

被引:3
|
作者
Liu, Sijie [1 ,2 ,3 ]
Zhou, Le [4 ]
Zhong, Tingjun [5 ]
Wu, Xin [3 ]
Neyts, Kristiaan [4 ]
机构
[1] Tsinghua Univ Shenzhen, Res Inst, Shenzhen 518000, Guangdong, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[4] Hong Kong Univ Sci & Technol, SKLADT, Clear Water Bay, Hong Kong, Peoples R China
[5] China Agr Univ, Coll Sci, Dept Chem, Beijing 100083, Peoples R China
关键词
composite solid-state electrolyte; polymers; solid-state lithium batteries; sulfides; ION-CONDUCTING ELECTROLYTES; GEL POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; THIO-LISICON; LI0.35LA0.55TIO3; CERAMICS; HYBRID ELECTROLYTES; LI2S-P2S5; GLASSES; INFINITE STRAIGHT; HIGH-PERFORMANCE; FILM;
D O I
10.1002/aenm.202403602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review introduces solid electrolytes based on sulfide/polymer composites which are used in all-solid-state lithium batteries, describing the use of polymers as plasticizer, the lithium-ion conductive channel, the preparation methods of solid-state electrolytes (SSEs), including dry methods and wet methods with their advantages and disadvantages. In addition, the physicochemical stability of sulfide/polymer composite based solid-state electrolytes is analyzed. The sulfide/polymer composite based solid-state electrolyte can be utilized in lithium metal or lithium sulfur batteries. However, there are still many problems left to be solved in practical applications of these solid-state electrolytes. In this review, several solutions are explored. Firstly, the ultra-long life cycle of batteries can be achieved by thinning the composite electrolyte. Secondly, when sulfur is applied as the positive electrode, the thinning electrolyte can reduce polarization and other problems. Finally, an integrated battery is employed to reduce the interface impedance. By addressing these aspects, the review aims to provide valuable insights into the future development of high-performance solid-state electrolytes in lithium battery technology.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Interfacial Challenges, processing strategies, and composite applications for high voltage all-solid-state lithium batteries based on halide and sulfide solid-state electrolytes
    Liu, Fuqian
    Gao, Lu
    Zhang, Zhipeng
    Zhang, Linlin
    Deng, Nanping
    Zhao, Yixia
    Kang, Weimin
    ENERGY STORAGE MATERIALS, 2024, 64
  • [32] Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
    Chen, Shaojie
    Xie, Dongjiu
    Liu, Gaozhan
    Mwizerwa, Jean Pierre
    Zhang, Qiang
    Zhao, Yanran
    Xu, Xiaoxiong
    Yao, Xiayin
    ENERGY STORAGE MATERIALS, 2018, 14 : 58 - 74
  • [33] Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Gao, Zhonghui
    Sun, Huabin
    Fu, Lin
    Ye, Fangliang
    Zhang, Yi
    Luo, Wei
    Huang, Yunhui
    ADVANCED MATERIALS, 2018, 30 (17)
  • [34] Interface engineering in LGPS-type solid-state electrolytes for all-solid-state lithium batteries
    Jian, Shuai
    Li, Hongda
    Jia, Xiaobo
    Zhong, Dailin
    Tao, Boran
    He, Xiong
    Wang, Guofu
    Chang, Haixin
    FLATCHEM, 2024, 46
  • [35] Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review
    Chen, Xiao
    Xie, Jian
    Zhao, Xinbing
    Zhu, Tiejun
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [36] Advances in sulfide solid-state electrolytes for lithium batteries
    Yao, Mingxuan
    Shi, Jiangtao
    Luo, Anhong
    Zhang, Zheqi
    Zhu, Guisheng
    Xu, Huarui
    Xu, Jiwen
    Jiang, Li
    Jiang, Kunpeng
    ENERGY STORAGE MATERIALS, 2025, 75
  • [37] Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries
    Yu, Tao
    Liu, Yuankai
    Li, Haoyu
    Sun, Yu
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL REVIEWS, 2025,
  • [38] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [39] Current Status and Future Directions in Environmental Stability of Sulfide Solid-State Electrolytes for All-Solid-State Batteries
    Liang, Jianwen
    Li, Xiaona
    Wang, Changhong
    Kim, Jung Tae
    Yang, Rong
    Wang, Jiantao
    Sun, Xueliang
    ENERGY MATERIAL ADVANCES, 2023, 4
  • [40] Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries
    Wang, Changhong
    Adair, Keegan R.
    Liang, Jianwen
    Li, Xiaona
    Sun, Yipeng
    Li, Xia
    Wang, Jiwei
    Sun, Qian
    Zhao, Feipeng
    Lin, Xiaoting
    Li, Ruying
    Huang, Huan
    Zhang, Li
    Yang, Rong
    Lu, Shigang
    Sun, Xueliang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (26)