Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries

被引:3
|
作者
Liu, Sijie [1 ,2 ,3 ]
Zhou, Le [4 ]
Zhong, Tingjun [5 ]
Wu, Xin [3 ]
Neyts, Kristiaan [4 ]
机构
[1] Tsinghua Univ Shenzhen, Res Inst, Shenzhen 518000, Guangdong, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[4] Hong Kong Univ Sci & Technol, SKLADT, Clear Water Bay, Hong Kong, Peoples R China
[5] China Agr Univ, Coll Sci, Dept Chem, Beijing 100083, Peoples R China
关键词
composite solid-state electrolyte; polymers; solid-state lithium batteries; sulfides; ION-CONDUCTING ELECTROLYTES; GEL POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; THIO-LISICON; LI0.35LA0.55TIO3; CERAMICS; HYBRID ELECTROLYTES; LI2S-P2S5; GLASSES; INFINITE STRAIGHT; HIGH-PERFORMANCE; FILM;
D O I
10.1002/aenm.202403602
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review introduces solid electrolytes based on sulfide/polymer composites which are used in all-solid-state lithium batteries, describing the use of polymers as plasticizer, the lithium-ion conductive channel, the preparation methods of solid-state electrolytes (SSEs), including dry methods and wet methods with their advantages and disadvantages. In addition, the physicochemical stability of sulfide/polymer composite based solid-state electrolytes is analyzed. The sulfide/polymer composite based solid-state electrolyte can be utilized in lithium metal or lithium sulfur batteries. However, there are still many problems left to be solved in practical applications of these solid-state electrolytes. In this review, several solutions are explored. Firstly, the ultra-long life cycle of batteries can be achieved by thinning the composite electrolyte. Secondly, when sulfur is applied as the positive electrode, the thinning electrolyte can reduce polarization and other problems. Finally, an integrated battery is employed to reduce the interface impedance. By addressing these aspects, the review aims to provide valuable insights into the future development of high-performance solid-state electrolytes in lithium battery technology.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808
  • [2] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46) : 27 - 46
  • [3] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Hao Wu
    Haoqin Han
    Zhenhua Yan
    Qing Zhao
    Jun Chen
    Journal of Solid State Electrochemistry, 2022, 26 : 1791 - 1808
  • [4] Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes
    Wu, Jinghua
    Liu, Sufu
    Han, Fudong
    Yao, Xiayin
    Wang, Chunsheng
    ADVANCED MATERIALS, 2021, 33 (06)
  • [5] A review of polymers in sulfide-based hybrid solid-state electrolytes for all-solid-state lithium batteries
    Kim, Minjae
    Seo, Junhyeok
    Suba, Jeanie Pearl Dizon
    Cho, Kuk Young
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (22) : 5475 - 5499
  • [6] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [7] Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries
    Li, Liansheng
    Deng, Yuanfu
    Chen, Guohua
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 154 - 177
  • [8] Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries
    Zhang, Qing
    Cao, Daxian
    Ma, Yi
    Natan, Avi
    Aurora, Peter
    Zhu, Hongli
    ADVANCED MATERIALS, 2019, 31 (44)
  • [9] All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes
    Park, Young Seon
    Lee, Jae Min
    Yi, Eun Jeong
    Moon, Ji-Woong
    Hwang, Haejin
    MATERIALS, 2021, 14 (08)
  • [10] Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF MEMBRANE SCIENCE, 2023, 675