Length Thermal buckling of organic nanobeams resting on viscous elastic foundation

被引:0
作者
Lieu, Pham Van [1 ]
机构
[1] Univ Econ Technol Ind, 456 Minh Khai, Hanoi, Vietnam
关键词
Large deformation; Thermal buckling; Nonlocal; Nanobeam; Viscoelastic foundation; VIBRATION;
D O I
10.1016/j.euromechsol.2024.105455
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study presents an analytical solution for organic solar nanobeams by including the new high-order shear deformation theory and considering the impact of size effects using non-local elasticity theory. The beam is supported by a viscoelastic base and experiences thermal loads that are distributed in accordance with uniform and nonlinear principles. The calculation formulae are derived from the consideration of significant deformations in the beam, resulting in increased complexity of the calculations. The equilibrium equation is derived from the fundamental principle of maximum work potential. The explicit equation for the critical thermal load is derived, providing a convenient means for the calculation and analysis of the impacts of relevant factors. The critical thermal buckling load encompasses both real and imaginary components, with the real component corresponding to the thermal load responsible for inducing beam instability, and the imaginary component associated with the dissipation of this load. This consideration is particularly pertinent when accounting for the foundation resistance. This finding enhances the level of interest in the research outcomes. This study also examined the impact of certain characteristic factors of the foundation and organic beams on the thermal buckling behavior of the beam, establishing a scientific basis for practical design applications.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory [J].
Bensaid, Ismail ;
Bekhadda, Ahmed ;
Kerboua, Bachir .
ADVANCES IN NANO RESEARCH, 2018, 6 (03) :279-298
[32]   Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an elastic foundation [J].
Song, Xi ;
Li, Shi-Rong .
MECHANICS RESEARCH COMMUNICATIONS, 2007, 34 (02) :164-171
[33]   Analytical solutions for bending, buckling and vibration of nanobeams on Winkler-Pasternak foundation [J].
Siddique, Minhaj Uddin Mahmood ;
Islam, Mohammad Nazmul ;
Devnath, Indronil .
INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2023, 12 (02)
[34]   Geometrically nonlinear dynamic analysis of organic solar cell resting on Winkler-Pasternak elastic foundation under thermal environment [J].
Li, Qingya ;
Wang, Qihan ;
Wu, Di ;
Chen, Xiaojun ;
Yu, Yuguo ;
Gao, Wei .
COMPOSITES PART B-ENGINEERING, 2019, 163 :121-129
[35]   Nonlinear Static and Dynamic Thermal Buckling Analysis of Spiral Stiffened Functionally Graded Cylindrical Shells with Elastic Foundation [J].
Shaterzadeh, Alireza ;
Foroutan, Kamran ;
Ahmadi, Habib .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2019, 11 (01)
[36]   Nonlinear thermal buckling of axially functionally graded micro and nanobeams [J].
Shafiei, Navvab ;
Mirjavadi, Seyed Sajad ;
Afshari, Behzad Mohasel ;
Rabby, Samira ;
Hamouda, A. M. S. .
COMPOSITE STRUCTURES, 2017, 168 :428-439
[37]   Thermal Post-buckling Analysis of Moderately Thick Nanobeams [J].
Vosoughi, A. R. ;
Anjabin, N. ;
Amiri, S. M. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2018, 42 (01) :33-38
[38]   Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment [J].
Daikh, Ahmed Amine ;
Houari, Mohammed Sid Ahmed ;
Karami, Behrouz ;
Eltaher, Mohamed A. ;
Dimitri, Rossana ;
Tornabene, Francesco .
APPLIED SCIENCES-BASEL, 2021, 11 (07)
[39]   Buckling of circular plate with foundation and elastic edge [J].
Rao, Lokavarapu Bhaskara ;
Rao, Chellapilla Kameswara .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2015, 11 (02) :149-156
[40]   Thermoelectric nonlinear vibration and buckling analysis of the smart porous core sandwich plate (SPCSP) resting on the elastic foundation [J].
Kumar, Pawan ;
Harsha, Suraj P. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2023, 34 (14) :1587-1616