Atomic simulation of the temperature effect on fabrication mechanism of micro-structured surface on single-crystal silicon

被引:2
作者
Liu, Changlin [1 ]
Yip, Wai Sze [1 ]
Chen, Juan [1 ]
Wang, Ruoxin [1 ]
Xu, Jianfeng [2 ]
To, Suet [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Ind & Syst Engn, State Key Lab Ultraprecis Machining Technol, Hong Kong, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan, Peoples R China
[3] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics simulation; Micro-structured surface; Single-crystal silicon; Surface formation; Subsurface damage; MOLECULAR-DYNAMICS SIMULATION; MONOCRYSTALLINE SILICON; CUTTING BEHAVIOR; MATERIAL REMOVAL; DIAMOND; MICROSTRUCTURE; MACHINABILITY; DAMAGE; TOOLS; HARD;
D O I
10.1016/j.jmapro.2024.11.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micro-structured surfaces have numerous applications in various fields. Thermal-assisted machining (TAM) is a promising solution for fabrication of micro-structured surfaces on brittle materials like single-crystal silicon. However, rare research focused on the fabrication mechanism of micro-structured surfaces during TAM and the effect of machining temperature on surface formation and subsurface damage remains unclear. In the present study, molecular dynamics (MD) simulation was conducted to investigate the machining mechanism of microstructured surface on single-crystal silicon via nano-scratching. The influences of machining temperature and former machined groove on surface formation and subsurface damage were discussed. The simulation results indicate that morphology of ridges on the uncut surface is greatly determined by the scratching direction. During the machining process, pile up on the machined surface is mainly caused by obstruction of the former machined groove and piling up of elastic recovery atoms. In the subsurface workpiece, machining from the following cut introduces negligible subsurface damage on the intersectional area. When the machining temperature raises, an increase in pile up is observed on the uncut surface and former machined groove. Less subsurface damage is generated and recrystallization of the disordered phases can be activated. In the intersectional area, the machining-induced defects can be partly eliminated by following processing at appropriate temperatures.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 52 条
[1]   Self-assembly of poly(p-phenylene)-based flower-like 3D micro-nanostructures [J].
Bai, Weibin ;
Wu, Chunxiang ;
Shang, Xianhuo ;
Liu, Xiaotao ;
Chen, Kuizhi ;
Lin, Jinhuo .
REACTIVE & FUNCTIONAL POLYMERS, 2016, 101 :75-81
[2]   Characteristics of "dynamic hard particles" in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear [J].
Cai, M. B. ;
Li, X. P. ;
Rahman, M. .
WEAR, 2007, 263 :1459-1466
[3]   High temperature nanoscratching of single crystal silicon under reduced oxygen condition [J].
Chavoshi, Saeed Zare ;
Gallo, Santiago Corujeira ;
Dong, Hanshan ;
Luo, Xichun .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 684 :385-393
[4]   Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation [J].
Chavoshi, Saeed Zare ;
Goel, Saurav ;
Luo, Xichun .
JOURNAL OF MANUFACTURING PROCESSES, 2016, 23 :201-210
[5]   Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC [J].
Chavoshi, Saeed Zare ;
Luo, Xichun .
RSC ADVANCES, 2016, 6 (75) :71409-71424
[6]   Dislocation-mediated plasticity in silicon during nanometric cutting: A molecular dynamics simulation study [J].
Chavoshi, Saeed Zare ;
Xu, Shuozhi ;
Luo, Xichun .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 51 :60-70
[7]   An atomistic simulation investigation on chip related phenomena in nanometric cutting of single crystal silicon at elevated temperatures [J].
Chavoshi, Saeed Zare ;
Luo, Xichun .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 113 :1-10
[8]   Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting [J].
Chavoshi, Saeed Zare ;
Goel, Saurav ;
Luo, Xichun .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (01)
[9]   Subsurface damage and phase transformation in laser-assisted nanometric cutting of single crystal silicon [J].
Chen, Xiao ;
Liu, Changlin ;
Ke, Jinyang ;
Zhang, Jianguo ;
Shu, Xuewen ;
Xu, Jianfeng .
MATERIALS & DESIGN, 2020, 190
[10]   Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation [J].
Cheong, WCD ;
Zhang, LC .
NANOTECHNOLOGY, 2000, 11 (03) :173-180