Optimization of Gas Huff-n-Puff for Enhanced Oil Recovery in Shale Condensate Reservoirs in Jiyang Depressions, China

被引:0
|
作者
Chen, Xianchao [1 ]
Jiang, Pengyu [1 ]
Lei, Taotao [1 ]
Fan, Hao [1 ]
Yu, Wei [2 ]
机构
[1] Chengdu Univ Technol, Coll Energy, Chengdu 610059, Peoples R China
[2] Univ Texas, Ctr Subsurface Energy & Environm, Austin, TX 78712 USA
关键词
CO2; HUFF; SIMULATION; INJECTION;
D O I
10.1021/acs.energyfuels.4c04149
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The shale condensate reservoirs hold vast reserves, suggesting significant development potential, yet low recovery remains a major industry obstacle. Based on a field case from the Jiyang depression, a method using gas cycling to improve the recovery rate of shale condensate gas reservoirs has been proposed. By integrating EDFM (embedded discrete fracture model) and nonequilibrium initialization technique, a model for shale condensate reservoir was established. The study conducted a comprehensive analysis of the impact of various pressure control strategies on production capacity, compared the effects of different gas injection medium and modes on enhancing recovery factor, and on this basis, optimized the CO2 huff-n-puff parameters. The research results demonstrated that (1) from the perspective of choke management, it is most appropriate to control BHP drop rate at 200 kPa/month. (2) By comparing different injection medium and mode, the CO2 huff-n-puff serves as the optimal gas injection design. (3) The optimal CO2 injection scheme is as follows: injecting after the third year of depletion development, with a single injection volume of 360 x 104 m3, a gas injection rate of 10 x 104 m3/d, a soaking period of 10 days, 6 huff-n-puff cycles. After parameter optimization, the recovery rate increased by 17.63%. It comprehensively analyzes and optimizes the parameters of the gas injection scheme through numerical simulation methods, providing valuable guidance and reference for the development of gas injection techniques in shale condensate reservoirs.
引用
收藏
页码:23466 / 23483
页数:18
相关论文
共 50 条
  • [21] An efficient hybrid methodology for optimization of CO2 Huff-n-Puff EOR and sequestration in tight oil reservoirs
    Ding, Shuaiwei
    Liu, Qian
    Li, Peng
    Wang, Lei
    Li, Yuanduo
    Zhang, Meng
    Xu, Chuan
    Ma, Jinfeng
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2024, 132
  • [22] Laboratory Investigations on Field Gas Huff-n-Puff for Improving Oil Recovery in Eagle Ford Shale-Effect of Operating Conditions
    Sie, Chao-yu
    Nguyen, Quoc P.
    ENERGY & FUELS, 2022, 36 (01) : 195 - 209
  • [23] CO2 Huff-n-Puff after Surfactant-Assisted Imbibition to Enhance Oil Recovery for Tight Oil Reservoirs
    Wei, Jianguang
    Zhou, Xiaofeng
    Zhou, Jiumu
    Li, Jiangtao
    Wang, Anlun
    ENERGY & FUELS, 2020, 34 (06) : 7058 - 7066
  • [24] Investigation of asphaltene-derived formation damage and nano-confinement on the performance of CO2 huff-n-puff in shale oil reservoirs
    Lee, Ji Ho
    Lee, Kun Sang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 182
  • [25] Combination of a chemical blend with CO2 huff-n-puff for enhanced oil recovery in oil shales
    Zeng, Tongzhou
    Miller, Chammi S.
    Mohanty, Kishore K.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194 (194)
  • [26] Research on Mechanism and Effect of Enhancing Gas Recovery by CO2 Huff-n-Puff in Shale Gas Reservoir
    Liu, Jiawei
    Xie, Mengke
    Liu, Dongchen
    Cao, Lieyan
    Xie, Shengyang
    Chang, Ying
    Zhang, Jian
    Yang, Xuefeng
    ACS OMEGA, 2024, 9 (30): : 33111 - 33118
  • [27] Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs
    Pu, Wanfen
    Wei, Bing
    Jin, Fayang
    Li, Yibo
    Jia, Hu
    Liu, Penggang
    Tang, Zhijuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 111 : 269 - 276
  • [28] Hybrid CO2-N2 huff-n-puff strategy in unlocking tight oil reservoirs
    Li, Songyan
    Sun, Lu
    Wang, Lei
    Li, Zhaomin
    Zhang, Kaiqiang
    FUEL, 2022, 309
  • [29] Enhanced heavy oil recovery via surfactant-assisted CO2 huff-n-puff processes
    Li, Binfei
    Zhang, Qiliang
    Li, Songyan
    Li, Zhaomin
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 25 - 34
  • [30] Microscopic mechanism of CO2 huff-n-puff promoting shale oil mobilization in nanopores
    Yang, Yongfei
    Song, Huaisen
    Li, Yingwen
    Liu, Fugui
    Zhang, Qi
    Wang, Jinlei
    Imani, Gloire
    Zhang, Lei
    Sun, Hai
    Zhong, Junjie
    Zhang, Kai
    Yao, Jun
    FUEL, 2024, 371