SARS: A Personalized Federated Learning Framework Towards Fairness and Robustness against Backdoor Attacks

被引:0
|
作者
Zhang, Webin [1 ]
Li, Youpeng [1 ]
An, Lingling [2 ]
Wan, Bo [2 ]
Wang, Xuyu [3 ]
机构
[1] XiDian Univ, Guangzhou Inst Technol, Guangzhou, Peoples R China
[2] Xidian Univ, Sch Comp Sci & Technol, Xian, Peoples R China
[3] Florida Int Univ, Knight Fdn, Sch Comp & Informat Sci, Miami, FL 33199 USA
来源
PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT | 2024年 / 8卷 / 04期
关键词
Federated Learning; Backdoor Attack; Attention Distillation; Fairness;
D O I
10.1145/3678571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL), an emerging distributed machine learning framework that enables each client to collaboratively train a global model by sharing local knowledge without disclosing local private data, is vulnerable to backdoor model poisoning attacks. By compromising some users, the attacker manipulates their local training process, and uploads malicious gradient updates to poison the global model, resulting in the poisoned global model behaving abnormally on the sub-tasks specified by the malicious user. Prior research has proposed various strategies to mitigate backdoor attacks. However, existing FL backdoor defense methods affect the fairness of the FL system, while fair FL performance may not be robust. Motivated by these concerns, in this paper, we propose S elf-Awareness R evi S ion (SARS), a personalized FL framework designed to resist backdoor attacks and ensure the fairness of the FL system. SARS consists of two key modules: adaptation feature extraction and knowledge mapping. In the adaptation feature extraction module, benign users can adaptively extract clean global knowledge with self-awareness and self-revision of the backdoor knowledge transferred from the global model. Based on the previous module, users can effectively ensure the correct mapping of clean sample features and labels. Through extensive experimental results, SARS can defend against backdoor attacks and improve the fairness of the FL system by comparing several state-of-the-art FL backdoor defenses or fair FL methods, including FedAvg, Ditto, WeakDP, FoolsGold, and FLAME.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] DLP: towards active defense against backdoor attacks with decoupled learning process
    Zonghao Ying
    Bin Wu
    Cybersecurity, 6
  • [42] Collusive Backdoor Attacks in Federated Learning Frameworks for IoT Systems
    Alharbi, Saier
    Guo, Yifan
    Yu, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19694 - 19707
  • [43] DLP: towards active defense against backdoor attacks with decoupled learning process
    Ying, Zonghao
    Wu, Bin
    CYBERSECURITY, 2023, 6 (01)
  • [44] Backdoor attacks against distributed swarm learning
    Chen, Kongyang
    Zhang, Huaiyuan
    Feng, Xiangyu
    Zhang, Xiaoting
    Mi, Bing
    Jin, Zhiping
    ISA TRANSACTIONS, 2023, 141 : 59 - 72
  • [45] The Impact of Data Distribution on Fairness and Robustness in Federated Learning
    Ozdayi, Mustafa Safa
    Kantarcioglu, Murat
    2021 THIRD IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2021), 2021, : 191 - 196
  • [46] Dual-domain based backdoor attack against federated learning
    Li, Guorui
    Chang, Runxing
    Wang, Ying
    Wang, Cong
    NEUROCOMPUTING, 2025, 623
  • [47] Copyright protection framework for federated learning models against collusion attacks
    Luo, Yuling
    Li, Yuanze
    Qin, Sheng
    Fu, Qiang
    Liu, Junxiu
    INFORMATION SCIENCES, 2024, 680
  • [48] Low dimensional secure federated learning framework against poisoning attacks
    Erdol, Eda Sena
    Ustubioglu, Beste
    Erdol, Hakan
    Ulutas, Guzin
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 183 - 199
  • [49] FLSAD: Defending Backdoor Attacks in Federated Learning via Self-Attention Distillation
    Chen, Lucheng
    Liu, Xiaoshuang
    Wang, Ailing
    Zhai, Weiwei
    Cheng, Xiang
    SYMMETRY-BASEL, 2024, 16 (11):
  • [50] Never Too Late: Tracing and Mitigating Backdoor Attacks in Federated Learning
    Zeng, Hui
    Zhou, Tongqing
    Wu, Xinyi
    Cai, Zhiping
    2022 41ST INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS 2022), 2022, : 69 - 81