Cooperative Multi-Target Positioning for Cell-Free Massive MIMO With Multi-Agent Reinforcement Learning

被引:0
|
作者
Liu, Ziheng [1 ,2 ]
Zhang, Jiayi [1 ,2 ]
Shi, Enyu [1 ,2 ]
Zhu, Yiyang [1 ,2 ]
Ng, Derrick Wing Kwan [3 ]
Ai, Bo [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Frontiers Sci Ctr Smart High Speed Railway Syst, Beijing 100044, Peoples R China
[3] Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
Computer architecture; Wireless communication; Scalability; Artificial neural networks; Estimation; Computational complexity; Accuracy; Reinforcement learning; Databases; Channel estimation; Cell-free massive MIMO; cooperative WKNN; multi-agent reinforcement learning; user positioning; COMMUNICATION; TECHNOLOGIES; OPTIMIZATION; NETWORKS;
D O I
10.1109/TWC.2024.3478232
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cell-free massive multiple-input multiple-output (mMIMO) is a promising technology to empower next-generation mobile communication networks. In this paper, to address the computational complexity associated with conventional fingerprint positioning, we consider a novel cooperative positioning architecture that involves certain relevant access points (APs) to establish positioning similarity coefficients. Then, we propose an innovative joint positioning and correction framework employing multi-agent reinforcement learning (MARL) to tackle the challenges of high-dimensional sophisticated signal processing, which mainly leverages on the received signal strength information for preliminary positioning, supplemented by the angle of arrival information to refine the initial position estimation. Moreover, to mitigate the bias effects originating from remote APs, we design a cooperative weighted K-nearest neighbor (Co-WKNN)-based estimation scheme to select APs with a high correlation to participate in user positioning. In the numerical results, we present comparisons of various user positioning schemes, which reveal that the proposed MARL-based positioning scheme with Co-WKNN can effectively improve positioning performance. It is important to note that the cooperative positioning architecture is a critical element in striking a balance between positioning performance and computational complexity.
引用
收藏
页码:19034 / 19049
页数:16
相关论文
共 50 条
  • [21] Extrinsic-and-Intrinsic Reward-Based Multi-Agent Reinforcement Learning for Multi-UAV Cooperative Target Encirclement
    Chen, Jinchao
    Wang, Yang
    Zhang, Ying
    Lu, Yantao
    Shu, Qiuhao
    Hu, Yujiao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
  • [22] WRFMR: A Multi-Agent Reinforcement Learning Method for Cooperative Tasks
    Liu, Hui
    Zhang, Zhen
    Wang, Dongqing
    IEEE ACCESS, 2020, 8 : 216320 - 216331
  • [23] Adaptive Intelligent Reflecting Surfaces for Enhanced Wireless Communication via Multi-Agent Deep Reinforcement Learning
    Monga, Sakhshra
    Bansal, Abhishake
    Aljubayri, Ibrahim
    Saluja, Nitin
    Prabha, Chander
    Malhotra, Shivani
    Srivastava, Prakash
    Khan, Mohammad Zubair
    IEEE ACCESS, 2025, 13 : 62071 - 62087
  • [24] Cooperative Multi-UAV Positioning for Aerial Internet Service Management: A Multi-Agent Deep Reinforcement Learning Approach
    Kim, Joongheon
    Park, Soohyun
    Jung, Soyi
    Cordeiro, Carlos
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 3797 - 3812
  • [25] Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach
    Zhou, Xiaobo
    Ke, Zhihui
    Qiu, Tie
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 4764 - 4776
  • [26] Preference-based experience sharing scheme for multi-agent reinforcement learning in multi-target environments
    Zuo, Xuan
    Zhang, Pu
    Li, Hui-Yan
    Liu, Zhun-Ga
    EVOLVING SYSTEMS, 2024, 15 (05) : 1681 - 1699
  • [27] Cooperative Multi-Agent Jamming of Multiple Rogue Drones Using Reinforcement Learning
    Valianti, Panayiota
    Malialis, Kleanthis
    Kolios, Panayiotis
    Ellinas, Georgios
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12345 - 12359
  • [28] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [29] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [30] Cooperative Multi-Agent Reinforcement Learning in Express System
    Li, Yexin
    Zheng, Yu
    Yang, Qiang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 805 - 814