Review of thermal management of electronics and phase change materials

被引:1
作者
Ghadim, H. Benisi
Godin, A. [1 ,2 ]
Veillere, A. [3 ]
Duquesne, M. [1 ,2 ]
Haillot, D.
机构
[1] La Rochelle Univ, LaSIE, UMR 7356, CNRS, Ave Michel Crepeau, F-17042 La Rochelle 1, France
[2] La Rochelle Univ, EDF R&D, CNRS, LaSIE,4evLab, Ave Michel Crepeau, F-17042 La Rochelle 1, France
[3] Univ Bordeaux, CNRS, Bordeaux INP, ICMCB,UMR 5026, F-33600 Pessac, France
关键词
Phase change materials; Thermal management systems; Latent heat; Electronic devices; Mobile phones; Laptop; Data center; Aircraft; LITHIUM-ION BATTERY; ENERGY-STORAGE MATERIALS; LATENT-HEAT STORAGE; VAPOR CHAMBER; THERMOSIPHON LOOP; PIPE; SYSTEM; SALT; PCM; PERFORMANCE;
D O I
10.1016/j.rser.2024.115039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Effective thermal management systems (TMS) are crucial for the optimal operation of electronic devices in computing, data centers, and transportation. This review begins by highlighting the essential role that TMS plays in today's electronics, where performance, reliability, and energy efficiency are of utmost importance. TMS strategies are vital for addressing the escalating thermal challenges associated with the ever-increasing computational demands of modern electronics. This study focuses on pivotal applications: mobile phones, laptops, data centers, electric vehicles and aircraft. Given the fast evolution of microelectronics technologies, research in electronics tends to improve compacity, significantly impacting their thermal behavior, a fact that has garnered scant attention. Device failures mainly occur when recommended temperature thresholds are exceeded. Current cooling solutions used to tackle this overheating consist of heat pipes and/or thermal drains (in most efficient cases, liquid-gas phase changes are involved), comprising assisted by noisy and energy consuming fans. Although this problem has been studied extensively for decades, no satisfactory solution has been found, and electronic component thermal management continues to be a major challenge. This work is an original contribution, and concludes that the development of innovative TMS based on hybrid materials (a metallic matrix with an optimized topology and whose microporosity is impregnated with phase change materials) could pave the way for a brand new generation of ambitious microelectronics technologies. The maximum tolerable temperature thresholds constitute the critical criteria for the targeted applications. The review makes PCM selections based on criteria such as latent heat, absence of undercooling, compatibility with metals.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Phase change material based cold thermal energy storage: Materials, techniques and applications - A review
    Veerakumar, C.
    Sreekumar, A.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 67 : 271 - 289
  • [32] Thermal energy storage for low and medium temperature applications using phase change materials - A review
    da Cunha, Jose Pereira
    Eames, Philip
    APPLIED ENERGY, 2016, 177 : 227 - 238
  • [33] Developing ternary composite phase change materials with two different phase change temperatures for battery thermal management
    Li, Jinghui
    Huang, Juhua
    Liu, Ziqiang
    Cao, Ming
    Chen, Ruike
    Zhang, Yafang
    APPLIED THERMAL ENGINEERING, 2023, 227
  • [34] A review of passive building thermal management with phase-change materials
    Zhang, Aitonglu
    Xiong, Yaxuan
    Zhao, Yanqi
    Wu, Yuting
    Xu, Qian
    Ding, Yulong
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 211
  • [35] Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments
    Xu, Ben
    Li, Peiwen
    Chan, Cholik
    APPLIED ENERGY, 2015, 160 : 286 - 307
  • [36] Thermal management for transient integrated battery and power electronics systems using phase change materials
    Zhang, Li
    Zhao, Huayong
    Liu, Changqing
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2025, 209
  • [37] A novel hybrid heat sink using phase change materials for transient thermal management of electronics
    Krishnan, S
    Garimella, SV
    Kang, SS
    ITHERM 2004, VOL 1, 2004, : 310 - 318
  • [38] Recent advances in phase change materials-based battery thermal management systems for electric vehicles
    Cai, Shaowei
    Zhang, Xuelai
    Ji, Jun
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [39] Lipid derived diamide phase change materials for high temperature thermal energy storage
    Floros, Michael C.
    Kaller, Kayden L. C.
    Poopalam, Kosheela D.
    Narine, Suresh S.
    SOLAR ENERGY, 2016, 139 : 23 - 28
  • [40] Phase Change Materials for Thermal Peak Management Applications with Specific Temperature Ranges
    Maxa, Jacob
    Novikov, Andrej
    Nowottnick, Mathias
    Heimann, Matthias
    Jarchoff, Kay
    PROCEEDINGS OF THE 17TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2018), 2018, : 92 - 101