Multimodal approach to optimize biopsy decision-making for PI-RADS 3 lesions on multiparametric MRI

被引:0
|
作者
Esengur, Omer Tarik
Yilmaz, Enis C.
Ozyoruk, Kutsev B.
Chen, Alex
Lay, Nathan S.
Gelikman, David G.
Merino, Maria J.
Gurram, Sandeep
Wood, Bradford J. [2 ]
Choyke, Peter L.
Harmon, Stephanie A.
Pinto, Peter A.
Turkbey, Baris [1 ]
机构
[1] NCI, NIH, Mol Imaging Branch, 10 Ctr Dr, MSC 1182, Bldg 10, Room B3B85, Bethesda, MD 20892 USA
[2] NCI, NIH, Ctr Intervent Oncol, Bethesda, MD USA
关键词
Prostate cancer; PI-RADS; 3; lesions; Artificial intelligence; PSA density; Multiparametric MRI; Biopsy decision-making; PROSTATE-CANCER DETECTION; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.clinimag.2024.110363
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop and evaluate a multimodal approach including clinical parameters and biparametric MRIbased artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PIRADS 3 lesions. Methods: This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.1-compliant interpretations of a genitourinary radiologist, lesion characteristics, history of prior biopsies, and AI evaluations, focusing mainly on the detection of clinically significant prostate cancer (csPCa) (International Society of Urological Pathology grade group >2) on MRI/US fusion-guided biopsy. The AI model lesion segmentations were compared to manual segmentations and biopsy results. The statistical methods employed included Fisher's exact test and logistic regression. Results: The cohort was comprised of 248 patients with 312 PI-RADS 3 lesions in total (n = 268 non-csPCa, n = 44 csPCa). The AI model's negative predictive value (NPV) was 89.2 % for csPCa in all lesions. In patient-level analysis, the NPV was 91.2 % for patients with a highest PI-RADS score of 3. PSAD was a significant predictor of csPCa (odds ratio = 5.8, p = 0.038). Combining AI and PSAD, where AI correctly mapped a lesion or PSAD >0.15 ng/mL2, achieved higher sensitivity (77.8 %) while maintaining a high NPV (93.1 %). Conclusion: Combining AI and PSAD has the potential to enhance biopsy decision-making for PI-RADS 3 lesions by minimizing missed csPCa occurrences and reducing unnecessary biopsies.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Pathological features of Prostate Imaging Reporting and Data System (PI-RADS) 3 MRI lesions in biopsy and radical prostatectomy specimens
    Rahota, Razvan-George
    Diamand, Romain
    Malavaud, Bernard
    Fiard, Gaelle
    Descotes, Jean-Luc
    Peltier, Alexandre
    Beauval, Jean-Baptiste
    Roumeguere, Thierry
    Roumiguie, Mathieu
    Albisinni, Simone
    Ploussard, Guillaume
    BJU INTERNATIONAL, 2022, 129 (05) : 621 - 626
  • [32] Should Targeted Biopsy be Performed in Patients Who Have Only Pi-rads 3 Lesions?
    Koparal, Murat Yavuz
    Soezen, Tevfik Sinan
    Karsiyakali, Nejdet
    Akdogan, Buelent
    oezen, Haluk
    Aslan, Gueven
    Tuerkeri, Levent
    ARCHIVOS ESPANOLES DE UROLOGIA, 2022, 75 (05): : 410 - 415
  • [33] The Value of 68 Ga-PSMA PET/MRI for Classifying Patients with PI-RADS 3 Lesions on Multiparametric MRI A Prospective Single-Center Study
    Shi, Jingyan
    Li, Danyan
    Chen, Mengxia
    Fu, Yao
    Peng, Shan
    Zhang, Qing
    Liang, Jing
    Lu, Qun
    Lu, Jiaming
    Ai, Shuyue
    Wang, Feng
    Qiu, Xuefeng
    Guo, Hongqian
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65 (04) : 555 - 559
  • [34] Predictors of prostate cancer cetection in MRI PI-RADS 3 lesions - Reality of a terciary center
    Araujo, Debora
    Gromicho, Alexandre
    Dias, Jorge
    Bastos, Samuel
    Maciel, Rui Miguel
    Sabenca, Ana
    Xambre, Luis
    ARCHIVIO ITALIANO DI UROLOGIA E ANDROLOGIA, 2023, 95 (04) : 11830
  • [35] PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer
    Giambelluca, Dario
    Cannella, Roberto
    Vernuccio, Federica
    Comelli, Albert
    Pavone, Alice
    Salvaggio, Leonardo
    Galia, Massimo
    Midiri, Massimo
    Lagalla, Roberto
    Salvaggio, Giuseppe
    CURRENT PROBLEMS IN DIAGNOSTIC RADIOLOGY, 2021, 50 (02) : 175 - 185
  • [36] Does Adding Standard Systematic Biopsy to Targeted Prostate Biopsy in PI-RADS 3 to 5 Lesions Enhance the Detection of Clinically Significant Prostate Cancer? Should All Patients with PI-RADS 3 Undergo Targeted Biopsy?
    Gomez-Gomez, Enrique
    Moreno Sorribas, Sara
    Valero-Rosa, Jose
    Blanca, Ana
    Mesa, Juan
    Salguero, Joseba
    Carrasco-Valiente, Julia
    Lopez-Ruiz, Daniel
    Jose Anglada-Curado, Francisco
    DIAGNOSTICS, 2021, 11 (08)
  • [37] Can a prostate biopsy be safely deferred on PI-RADS 1,2 or 3 lesions seen on pre-biopsy mp-MRI?
    Raheem, Rickaz Abdul
    Razzaq, Ahsen
    Beraud, Victoria
    Menzies-Wilson, Richard
    Odeh, Rakan
    Ibiok, Imoh
    Mulawkar, Prashant
    Andrews, Henry
    Anjum, Iqbal
    Hosny, Khaled
    Leslie, Tom
    ARAB JOURNAL OF UROLOGY, 2023, 21 (01) : 10 - 17
  • [38] Sub-differentiation of PI-RADS 3 lesions in TZ by advanced diffusion-weighted imaging to aid the biopsy decision process
    Zhou, Kun-Peng
    Huang, Hua-Bin
    Bu, Chao
    Luo, Zhong-Xing
    Huang, Wen-Sheng
    Xie, Li-Zhi
    Liu, Qing-Yu
    Bian, Jie
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [39] PI-RADS Multiparametric MRI Correlation with Radical Prostatectomy Histology: How have we progressed?
    Willox, Gregor
    Chemasle, Christophe
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2021, 17 : 64 - 64
  • [40] Comparison of Targeted Biopsy and Combined Biopsy to Avoid Unnecessary Systematic Biopsy in Patients with PI-RADS 5 Lesions
    Yuan, Changwei
    Li, Derun
    Wu, Jingyun
    Shen, Qi
    Wang, Xiaoying
    Xiao, Jiangxi
    He, Zhisong
    Zhou, Liqun
    Li, Xuesong
    Liu, Yi
    Zhao, Zheng
    BIOMEDICINES, 2023, 11 (12)