Study of some nonlinear self-similar distributions

被引:0
作者
Department of Mathematics, Faculty of Sciences, University of Monastir, 5000 Monastir, Tunisia [1 ]
机构
[1] Department of Mathematics, Faculty of Sciences, University of Monastir
来源
Int. J. Wavelets Multiresolution Inf. Process. | 2007年 / 6卷 / 907-916期
关键词
Multifractal formalism; Self-similarity; Wavelets;
D O I
10.1142/S0219691307002105
中图分类号
学科分类号
摘要
We study some properties of some self-similar distributions constructed on a nonlinear way. We use wavelets to characterize such properties and to check the validity of the multifractal formalism in some cases. © World Scientific Publishing Company.
引用
收藏
页码:907 / 916
页数:9
相关论文
共 7 条
  • [1] Arneodo A., Bacry E., Jaffard S., Muzy J.F., Oscillating singularities on Cantor sets: A grand-canonical multifractal formalism, J. Stat. Phys, 87, 1-2, pp. 971-998, (1997)
  • [2] Arneodo A., Bacry E., Muzy J.F., Random cascades on wavelet dyadic trees, J. Math. Phys, 39, pp. 4142-4164, (1998)
  • [3] Ben Mabrouk A., Multifractal analysis of some non isotropic quasi-self-similar functions, Far East J. Dyn. Syst, 7, 1, pp. 23-63, (2005)
  • [4] Ben Mabrouk A., Wavelet analysis of nonlinear anisotropic quasi-self-similar functions, Poster Session, Colloque WavE 2006, (2006)
  • [5] Ben Mabrouk A., On some nonlinear non isotropic quasi-self-similar functions, accepted in J, Nonlinear Dyn, (2007)
  • [6] Jaffard S., Multilfractal formalism for functions. Part 2: Selfsimilar functions, SIAM J. Math. Anal, 28, 4, pp. 971-998, (1997)
  • [7] Melot C., Sur les singularité oscillantes et le formalisme multifractal, (2002)