Existence and multiplicity for fractional differential equations with m(ξ)-Kirchhoff type-equation

被引:0
作者
Feitosa, Everson F. S. [1 ]
Sousa, J. Vanterler da C. [2 ]
Moreira, S. I. [3 ]
Costa, Gustavo S. A. [4 ]
机构
[1] State Univ Campinas UNICAMP, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Estadual Maranhao, Dept Math & Informat, Aerosp Engn, PPGEA, BR-65054 Sao Luis, MA, Brazil
[3] Univ Estadual Maranhao, Dept Math & Informat, Sao Luis, Maranhao, Brazil
[4] Univ Fed Maranhao, BR-65080805 Sao Luis, MA, Brazil
关键词
Fractional differential equations; m(xi)-Kirchhoff equation; Existence; Multiplicity; KIRCHHOFF-TYPE PROBLEM; P-LAPLACIAN; UNIQUENESS;
D O I
10.1007/s40314-024-02980-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first investigate the Palais-Smale compactness condition of the energy functional associated to a m(xi)-Kirchhoff-type operator in the appropriate fractional space setting. In this sense, using the Mountain Pass Theorem and the Fountain Theorem, we investigate the existence and multiplicity of weak solutions for a new class of fractional differential equations with m(xi)-Kirchhoff-type equation.
引用
收藏
页数:24
相关论文
共 50 条
[31]   EXISTENCE AND STABILITY OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH HADAMARD DERIVATIVE [J].
Wang, JinRong ;
Zhou, Yong ;
Medved, Milan .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 41 (01) :113-133
[32]   EXISTENCE RESULTS FOR DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER AND IMPULSES [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Slimani, Boualem Attou .
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2008, 44 :1-21
[33]   On the Existence Results for a Mixed Hybrid Fractional Differential Equations of Sequential Type [J].
Arab, Meraa ;
Awadalla, Muath ;
Manigandan, Murugesan ;
Abuasbeh, Kinda ;
Mahmudov, Nazim I. ;
Nandha Gopal, Thangaraj .
FRACTAL AND FRACTIONAL, 2023, 7 (03)
[34]   Existence and uniqueness for p-type fractional neutral differential equations [J].
Zhou, Yong ;
Jiao, Feng ;
Li, Jing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2724-2733
[35]   Multiplicity of solutions for critical Kirchhoff type equations [J].
Hebey, Emmanuel .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (06) :913-924
[36]   MULTIPLICITY OF SOLUTIONS TO KIRCHHOFF TYPE EQUATIONS WITH CRITICAL SOBOLEV EXPONENT [J].
Chen, Peng ;
Liu, Xiaochun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) :113-125
[37]   Multiplicity of solutions for Kirchhoff type equations with critical growth in RN [J].
Paes-Leme, Leandro C. ;
Rodrigues, Bruno M. ;
de Souza, Gustavo ;
Oliveira, Fernando L. P. .
APPLICABLE ANALYSIS, 2024, 103 (17) :3182-3196
[38]   EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS [J].
Xie, Qi-Lin ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
[39]   Existence of Solution for a Singular Elliptic Equation of Kirchhoff Type [J].
Li, Qingwei ;
Gao, Wenjie ;
Han, Yuzhu .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
[40]   Existence of Solution for a Singular Elliptic Equation of Kirchhoff Type [J].
Qingwei Li ;
Wenjie Gao ;
Yuzhu Han .
Mediterranean Journal of Mathematics, 2017, 14