Existence and multiplicity for fractional differential equations with m(ξ)-Kirchhoff type-equation

被引:0
作者
Feitosa, Everson F. S. [1 ]
Sousa, J. Vanterler da C. [2 ]
Moreira, S. I. [3 ]
Costa, Gustavo S. A. [4 ]
机构
[1] State Univ Campinas UNICAMP, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Estadual Maranhao, Dept Math & Informat, Aerosp Engn, PPGEA, BR-65054 Sao Luis, MA, Brazil
[3] Univ Estadual Maranhao, Dept Math & Informat, Sao Luis, Maranhao, Brazil
[4] Univ Fed Maranhao, BR-65080805 Sao Luis, MA, Brazil
关键词
Fractional differential equations; m(xi)-Kirchhoff equation; Existence; Multiplicity; KIRCHHOFF-TYPE PROBLEM; P-LAPLACIAN; UNIQUENESS;
D O I
10.1007/s40314-024-02980-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first investigate the Palais-Smale compactness condition of the energy functional associated to a m(xi)-Kirchhoff-type operator in the appropriate fractional space setting. In this sense, using the Mountain Pass Theorem and the Fountain Theorem, we investigate the existence and multiplicity of weak solutions for a new class of fractional differential equations with m(xi)-Kirchhoff-type equation.
引用
收藏
页数:24
相关论文
共 50 条
[21]   On the Existence and Multiplicity of Solutions for Dirichlet’s problem for Fractional Differential equations [J].
Diego Averna ;
Stepan Tersian ;
Elisabetta Tornatore .
Fractional Calculus and Applied Analysis, 2016, 19 :253-266
[22]   ON THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DIRICHLET'S PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Averna, Diego ;
Tersian, Stepan ;
Tornatore, Elisabetta .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :253-266
[23]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO BOUNDARY.VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Caixia Guo ;
Jianmin Guo ;
Shugui Kang .
AnnalsofDifferentialEquations, 2014, 30 (02) :144-149
[24]   Multiplicity results for the Kirchhoff type equations with critical growth [J].
Yang, Liu ;
Liu, Zhisu ;
Ouyang, Zigen .
APPLIED MATHEMATICS LETTERS, 2017, 63 :118-123
[25]   Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation [J].
He, Xiaoming ;
Zou, Wenming .
MANUSCRIPTA MATHEMATICA, 2019, 158 (1-2) :159-203
[26]   Existence of positive solutions for fractional Kirchhoff equation [J].
Wu, Ke ;
Gu, Guangze .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02)
[27]   Existence of positive solutions for fractional Kirchhoff equation [J].
Ke Wu ;
Guangze Gu .
Zeitschrift für angewandte Mathematik und Physik, 2022, 73
[28]   SOLUTIONS FOR THE KIRCHHOFF TYPE EQUATIONS WITH FRACTIONAL LAPLACIAN [J].
Jia, Yanping ;
Gao, Ying ;
Zhang, Guang .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06) :2704-2710
[29]   THE MULTIPLICITY SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS OF RIEMANN-LIOUVILLE TYPE [J].
Ma, Tianfu ;
Yan, Baoqiang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) :801-818
[30]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AT RESONANCE [J].
Sousa, Jose vanterler da c. ;
Pigossi, Mariane ;
Nyamoradi, Nemat .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (34) :1-17