Existence and multiplicity for fractional differential equations with m(ξ)-Kirchhoff type-equation

被引:0
|
作者
Feitosa, Everson F. S. [1 ]
Sousa, J. Vanterler da C. [2 ]
Moreira, S. I. [3 ]
Costa, Gustavo S. A. [4 ]
机构
[1] State Univ Campinas UNICAMP, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Estadual Maranhao, Dept Math & Informat, Aerosp Engn, PPGEA, BR-65054 Sao Luis, MA, Brazil
[3] Univ Estadual Maranhao, Dept Math & Informat, Sao Luis, Maranhao, Brazil
[4] Univ Fed Maranhao, BR-65080805 Sao Luis, MA, Brazil
关键词
Fractional differential equations; m(xi)-Kirchhoff equation; Existence; Multiplicity; KIRCHHOFF-TYPE PROBLEM; P-LAPLACIAN; UNIQUENESS;
D O I
10.1007/s40314-024-02980-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first investigate the Palais-Smale compactness condition of the energy functional associated to a m(xi)-Kirchhoff-type operator in the appropriate fractional space setting. In this sense, using the Mountain Pass Theorem and the Fountain Theorem, we investigate the existence and multiplicity of weak solutions for a new class of fractional differential equations with m(xi)-Kirchhoff-type equation.
引用
收藏
页数:24
相关论文
共 50 条