Effect of equilateral triangle vacancy defect on the thermal conductivity and thermal rectification of graphene: A molecular dynamics study

被引:0
作者
机构
[1] Laboratory of Advanced Design, Manufacturing and Reliability for MEMS/NEMS/ODES, School of Mechanical Engineering, Jiangsu University
[2] Institute of Integrated Design and Manufacturing for Modern Equipment, Jiangsu University
来源
Yang, P. (yangpingdm@ujs.edu.cn) | 1600年 / Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland卷 / 07期
关键词
armchair graphene; molecular dynamics; simulation; temperature; thermal conductivity; thermal rectification; vacancy defect;
D O I
10.1504/IJMSI.2013.055110
中图分类号
学科分类号
摘要
Using classical non-equilibrium molecular dynamics simulations (NEMD), thermal rectification of armchair graphene affected by vacancy defect is investigated. Equilateral triangle vacancy defect is observed on the thermal rectification and the thermal conductivity of armchair grapheme in this paper. We find that thermal conductivities for armchair graphene affected by vacancy defect in both directions decrease with increasing temperature. Besides, thermal rectification of the armchair graphene also decreases with increasing temperature. Copyright © 2013 Inderscience Enterprises Ltd.
引用
收藏
页码:131 / 138
页数:7
相关论文
共 17 条
  • [1] Chang C.W., Okawa D., Majumdar A., Zettl A., Solid-state thermal rectifier, Science, 314, 5802, pp. 1121-1124, (2006)
  • [2] Hu J., Ruan X., Jiang Z., Chen Y.P., Molecular dynamics calculation of thermal conductivity of graphene nanoribbons, AIP Conf. Proc., 1173, pp. 135-138, (2009)
  • [3] Muller-Plathe F., A simple nonequilibrium molecular dynamics method of calculating the thermal conductivity, J. Chem. Phys., 106, 14, (1997)
  • [4] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric field in atomically thin carbon films, Science, 306, 5696, pp. 666-669, (2004)
  • [5] Roberts N.A., Walker D.G., Computational study of thermal rectification from nanostructeres interfaces, Journal of Heat Transfer, 133, 9, pp. 092401-092401, (2011)
  • [6] Wang X.-L., Xie F., Zxhang L., Song X., Xi T.X., Yang X., Yang P., Effect of vacancy defects on the thermal conductivity of graphene nanoribbons: A molecular dynamics study, International Journal of Materials and Structural Integrity, 6, 1, pp. 26-35, (2012)
  • [7] Wu G., Li B., Thermal rectification in carbon nanotube intermolecular junctions: Molecular dynamics calculations, Phys. Rev. B, 76, 8, (2007)
  • [8] Wu G., Li B., Thermal rectifiers from deformed carbon nanohorns, Journal of Physics: Condensed Matter, 20, 17, (2008)
  • [9] Wu N., Xu L., Wang H.-Q., Zheng J.-C., Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology, 22, 10, (2011)
  • [10] Wu Y.-S., Yang P., Xu H.-F., Xu X.-X., Numerical investigation on the thermal conductive characteristics of the TiO<sub>2</sub>/ZnO bilayer films, International Journal of Materials and Structural Integrity, 5, 1, pp. 26-35, (2011)