Cost-Effective Hybrid Computation Offloading in Satellite-Terrestrial Integrated Networks

被引:1
作者
Zhang, Xinyuan [1 ]
Liu, Jiang [1 ,2 ]
Xiong, Zehui [3 ]
Huang, Yudong [1 ]
Zhang, Ran [1 ,2 ]
Mao, Shiwen [4 ]
Han, Zhu [5 ,6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Purple Mt Labs, Future Network Res Ctr, Nanjing 211111, Peoples R China
[3] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar Dept, Singapore 487372, Singapore
[4] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[6] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 22期
基金
中国国家自然科学基金;
关键词
Computation offloading; successive convex approximation (SCA); mobile edge comput- ing; satellite-terrestrial integrated network (STIN); RESOURCE-ALLOCATION; OPTIMIZATION; ARCHITECTURE; ALGORITHM; PARALLEL; INTERNET; SPACE; QOS;
D O I
10.1109/JIOT.2024.3424782
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) ecosystem is undergoing a significant evolution through its integration with satellite networks, empowering remote and computation-intensive IoT tasks to leverage computing services via satellite links. Current research in this field predominantly focuses on minimizing latency and energy consumption in computation offloading, yet overlooks the substantial costs incurred by satellite resource utilization. To address this oversight, we introduce a cost-effective hybrid computation offloading (CE-HCO) paradigm in satellite-terrestrial integrated networks (STINs) in this article. First, we propose the 5G-based system framework facilitates gNB and user plane function functionalities on satellites and fosters collaboration between public cloud providers and satellite operators. The framework is in line with the latest 3GPP activities and business models in satellite computing. Then, we formulate the CE-HCO problem, aiming to minimize total computation offloading costs while satisfying diverse user latency requirements and adhering to satellite energy constraints. To tackle this NP-hard problem, we develop an algorithm employing the penalty method and successive convex approximation to simplify the complex mixed-integer nonlinear programming into tractable convex iterations. Simulation results show that our approach outperforms existing baselines in balancing performance and cost, and offer guidance on pricing policies for satellite computing services to promote future commercial growth.
引用
收藏
页码:36786 / 36800
页数:15
相关论文
共 50 条
  • [32] Cooperative Caching and Resource Allocation in Integrated Satellite-Terrestrial Networks
    Gao, Xiangqiang
    Shao, Yingzhao
    Wang, Yuanle
    Zhang, Hangyu
    Liu, Yang
    ELECTRONICS, 2024, 13 (07)
  • [33] Resource allocation for integrated satellite-terrestrial networks based on RSMA
    Shi, Jianfeng
    Yang, Husheng
    Chen, Xiao
    Yang, Zhaohui
    IET COMMUNICATIONS, 2024,
  • [34] A Computation Offloading Strategy in Satellite Terrestrial Networks with Double Edge Computing
    Wang, Yuanjun
    Zhang, Jiaxin
    Zhang, Xing
    Wang, Peng
    Liu, Liangjingrong
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS 2018), 2018, : 450 - 455
  • [35] Time-division based integrated sensing, communication, and computing in integrated satellite-terrestrial networks
    Zhu, Xiangming
    Wang, Hua
    Yang, Zhaohui
    Pham, Quoc-Viet
    DIGITAL SIGNAL PROCESSING, 2023, 143
  • [36] Mobility-Aware Computation Offloading in Satellite Edge Computing Networks
    Zhou, Jian
    Yang, Qi
    Zhao, Lu
    Dai, Haipeng
    Xiao, Fu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9135 - 9149
  • [37] Energy-Efficient Data Offloading for Multi-Cell Satellite-Terrestrial Networks
    Ji, Zhe
    Wu, Sheng
    Jiang, Chunxiao
    Hu, Dongwei
    Wang, Wenbo
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (10) : 2265 - 2269
  • [38] Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
    Tong, Minglei
    Li, Song
    Han, Wanjiang
    Wang, Xiaoxiang
    CHINA COMMUNICATIONS, 2024, 21 (03) : 230 - 246
  • [39] Opportunistic Content-Aware Routing in Satellite-Terrestrial Integrated Networks
    Tang, Jin
    Li, Jian
    Zhang, Lan
    Chen, Xianhao
    Xue, Kaiping
    Sun, Qibin
    Lu, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10460 - 10474
  • [40] Efficient Onboard Signaling Processing for Satellite-Terrestrial Integrated Core Networks
    Liu, Yu
    Wang, Luhan
    Liu, Ao
    Lu, Zhaoming
    Shou, Guochu
    Ksentini, Adlen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39865 - 39879