Cost-Effective Hybrid Computation Offloading in Satellite-Terrestrial Integrated Networks

被引:1
作者
Zhang, Xinyuan [1 ]
Liu, Jiang [1 ,2 ]
Xiong, Zehui [3 ]
Huang, Yudong [1 ]
Zhang, Ran [1 ,2 ]
Mao, Shiwen [4 ]
Han, Zhu [5 ,6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Purple Mt Labs, Future Network Res Ctr, Nanjing 211111, Peoples R China
[3] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar Dept, Singapore 487372, Singapore
[4] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[6] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 22期
基金
中国国家自然科学基金;
关键词
Computation offloading; successive convex approximation (SCA); mobile edge comput- ing; satellite-terrestrial integrated network (STIN); RESOURCE-ALLOCATION; OPTIMIZATION; ARCHITECTURE; ALGORITHM; PARALLEL; INTERNET; SPACE; QOS;
D O I
10.1109/JIOT.2024.3424782
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) ecosystem is undergoing a significant evolution through its integration with satellite networks, empowering remote and computation-intensive IoT tasks to leverage computing services via satellite links. Current research in this field predominantly focuses on minimizing latency and energy consumption in computation offloading, yet overlooks the substantial costs incurred by satellite resource utilization. To address this oversight, we introduce a cost-effective hybrid computation offloading (CE-HCO) paradigm in satellite-terrestrial integrated networks (STINs) in this article. First, we propose the 5G-based system framework facilitates gNB and user plane function functionalities on satellites and fosters collaboration between public cloud providers and satellite operators. The framework is in line with the latest 3GPP activities and business models in satellite computing. Then, we formulate the CE-HCO problem, aiming to minimize total computation offloading costs while satisfying diverse user latency requirements and adhering to satellite energy constraints. To tackle this NP-hard problem, we develop an algorithm employing the penalty method and successive convex approximation to simplify the complex mixed-integer nonlinear programming into tractable convex iterations. Simulation results show that our approach outperforms existing baselines in balancing performance and cost, and offer guidance on pricing policies for satellite computing services to promote future commercial growth.
引用
收藏
页码:36786 / 36800
页数:15
相关论文
共 50 条
  • [21] Auction Design and Analysis for SDN-Based Traffic Offloading in Hybrid Satellite-Terrestrial Networks
    Du, Jun
    Jiang, Chunxiao
    Zhang, Haijun
    Ren, Yong
    Guizani, Mohsen
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (10) : 2202 - 2217
  • [22] Task Offloading in MEC-Aided Satellite-Terrestrial Networks: A Reinforcement Learning Approach
    Wei, Peng
    Feng, Wei
    Wang, Kaiwen
    Chen, Yunfei
    Ge, Ning
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 710 - 715
  • [23] Matching Game for Intelligent Resource Management in Integrated Satellite-Terrestrial Networks
    Mi, Xinru
    Yang, Chungang
    Song, Yanbo
    Han, Zhu
    Guizani, Mohsen
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (06) : 88 - 94
  • [24] Energy efficiency optimization for uplink traffic offloading in the integrated satellite-terrestrial network
    Peng, Cong
    He, Yuanzhi
    Zhao, Shanghong
    Li, Yongjun
    Wang, Xiang
    Deng, Boyu
    WIRELESS NETWORKS, 2022, 28 (03) : 1147 - 1161
  • [25] Load Balancing for 5G Integrated Satellite-Terrestrial Networks
    Shahid, Syed Maaz
    Seyoum, Yemane Teklay
    Won, Seok Ho
    Kwon, Sungoh
    IEEE ACCESS, 2020, 8 : 132144 - 132156
  • [26] Inter-Satellite Cooperative Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
    Tong, Minglei
    Li, Song
    Wang, Xiaoxiang
    Wei, Peng
    SENSORS, 2023, 23 (02)
  • [27] Joint Satellite Gateway Placement and Routing for Integrated Satellite-Terrestrial Networks
    Torkzabn, Nariman
    Gholami, Anoushch
    Baras, John S.
    Papagianni, Chrysa
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [28] A Review on Satellite-Terrestrial Integrated Wireless Networks: Challenges and Open Research Issues
    Lakew, Demeke Shumeye
    Tran, Anh-Tien
    Masood, Arooj
    Dao, Nhu-Ngoc
    Cho, Sungrae
    2023 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN, 2023, : 638 - 641
  • [29] Distributionally Robust Optimal Routing for Integrated Satellite-Terrestrial Networks Under Uncertainty
    Tsai, Kai-Chu
    Fan, Lei
    Lent, Ricardo
    Wang, Li-Chun
    Han, Zhu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (10) : 6401 - 6415
  • [30] IRS-Aided Uplink Transmission Scheme in Integrated Satellite-Terrestrial Networks
    Liu, Xiaoyu
    Zhao, Bai
    Lin, Min
    Ouyang, Jian
    Wang, Jun-Bo
    Wang, Jiangzhou
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1847 - 1861