Suppression of dark-state polariton collapses in a cold-atom quantum memory

被引:0
作者
Gosar K. [1 ,2 ]
Jevšenak V.P. [1 ,2 ]
MeŽnaršič T. [1 ,2 ]
Beguš S. [3 ]
Krehlik T. [4 ]
Ponikvar D. [1 ,2 ]
Zupanič E. [1 ,5 ]
Jeglič P. [1 ,2 ]
机构
[1] JoŽef Stefan Institute, Jamova 39, Ljubljana
[2] Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana
[3] Faculty of Electrical Engineering, University of Ljubljana, TrŽaška Cesta 25, Ljubljana
[4] Photonics Department, Jagiellonian University, Łojasiewicza 11, Kraków
[5] Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva Cesta 12, Ljubljana
关键词
Compendex;
D O I
10.1103/PhysRevA.108.032618
中图分类号
学科分类号
摘要
We observe dark-state polariton collapses and revivals in a quantum memory based on electromagnetically induced transparency on a cloud of cold cesium atoms in a magnetic field. Using σ+-polarized signal and control beams in the direction of the magnetic field, we suppress the dark-state polariton collapses by polarizing the atoms towards one of the stretched Zeeman states and optimizing the frequency detuning of the control beam. In this way, we demonstrate a quantum memory with only partial dark-state polariton collapses, making the memory usable at any storage time, not only at discretized times of revivals. We obtain a storage time of more than 400 μs, which is ten times longer than what we can achieve by trying to annul the magnetic field. © 2023 American Physical Society.
引用
收藏
相关论文
共 29 条
  • [1] Duan L. M., Lukin M. D., Cirac J. I., Zoller P., Long-distance quantum communication with atomic ensembles and linear optics, Nature (London), 414, (2001)
  • [2] Bhaskar M. K., Riedinger R., Machielse B., Levonian D. S., Nguyen C. T., Knall E. N., Park H., Englund D., Loncar M., Sukachev D. D., Lukin M. D., Experimental demonstration of memory-enhanced quantum communication, Nature (London), 580, (2020)
  • [3] Heshami K., England D. G., Humphreys P. C., Bustard P. J., Acosta V. M., Nunn J., Sussman B. J., Quantum memories: Emerging applications and recent advances, J. Mod. Opt, 63, (2016)
  • [4] Lvovsky A. I., Sanders B. C., Tittel W., Optical quantum memory, Nat. Photonics, 3, (2009)
  • [5] Ma L., Slattery O., Tang X., Optical quantum memory based on electromagnetically induced transparency, J. Opt, 19, (2017)
  • [6] Fleischhauer M., Imamoglu A., Marangos J. P., Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys, 77, (2005)
  • [7] Finkelstein R., Bali S., Firstenberg O., Novikova I., A practical guide to electromagnetically induced transparency in atomic vapor, New J. Phys, 25, (2023)
  • [8] Lukin M. D., Fleischhauer M., Zibrov A. S., Robinson H. G., Velichansky V. L., Hollberg L., Scully M. O., Spectroscopy in Dense Coherent Media: Line Narrowing and Interference Effects, Phys. Rev. Lett, 79, (1997)
  • [9] Hau L. V., Harris S. E., Dutton Z., Behroozi C. H., Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature (London), 397, (1999)
  • [10] Fleischhauer M., Lukin M. D., Dark-State Polaritons in Electromagnetically Induced Transparency, Phys. Rev. Lett, 84, (2000)