Construction of a local and global Lyapunov function using radial basis functions

被引:0
|
作者
Giesl, Peter [1 ]
机构
[1] Department of Mathematics, University of Sussex, Mantell Building, Falmer, Brighton BN1 9RF, United Kingdom
来源
| 1600年 / Oxford University Press卷 / 73期
关键词
The basin of attraction of an asymptotically stable equilibrium for an autonomous differential equation x = f(x) can be determined through sublevel sets of a Lyapunov function. In Giesl (2007; Discrete Contin. Dyn. Syst. Ser. B; 7; 101-124); a Lyapunov function is constructed by approximating the solution of a linear partial differential equation using radial basis functions. However; the resulting Lyapunov function is non-local; i.e. it has no negative orbital derivative in a neighbourhood of the equilibrium. In this paper; we modify the construction method by using the Taylor polynomial and thus obtain a Lyapunov function with negative orbital derivative both locally and globally. © The Author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Construction of a local and global Lyapunov function using radial basis functions
    Giesl, Peter
    IMA JOURNAL OF APPLIED MATHEMATICS, 2008, 73 (05) : 782 - 802
  • [2] Construction of a local and global Lyapunov function for discrete dynamical systems using radial basis functions
    Giesl, Peter
    JOURNAL OF APPROXIMATION THEORY, 2008, 153 (02) : 184 - 211
  • [3] Construction of a global Lyapunov function using radial basis functions with a single operator
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (01): : 101 - 124
  • [4] Construction of Global Lyapunov Functions Using Radial Basis Functions Introduction
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 1 - +
  • [5] GRID REFINEMENT IN THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS
    Mohammed, Najla
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2453 - 2476
  • [6] Global and Local Modelling in Radial Basis Functions Networks
    Herrera, L. J.
    Pomares, H.
    Rojas, I.
    Guillen, A.
    Rubio, G.
    Urquiza, J.
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 49 - 56
  • [7] Global and local optimization using radial basis function response surface models
    McDonald, Dale B.
    Grantham, Walter J.
    Tabor, Wayne L.
    Murphy, Michael J.
    APPLIED MATHEMATICAL MODELLING, 2007, 31 (10) : 2095 - 2110
  • [8] Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions
    Bjorkman, Mattias
    Holmstrom, Kenneth
    OPTIMIZATION AND ENGINEERING, 2000, 1 (04) : 373 - 397
  • [9] Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions
    Mattias Björkman
    Kenneth Holmström
    Optimization and Engineering, 2000, 1 : 373 - 397
  • [10] A stochastic radial basis function method for the global optimization of expensive functions
    Regis, Rommel G.
    Shoemaker, Christine A.
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (04) : 497 - 509