Utilizing carbon nanofibers with MnO2 coating for high-performance silicon-based anodes of lithium-ion batteries

被引:0
|
作者
Zhang, Ranshuo [1 ,2 ]
Sun, Chuxiao [1 ]
Jia, Fudong [1 ,2 ]
Wang, Fangfang [1 ,2 ]
Li, Silong [1 ]
Sang, Jingjing [1 ,2 ]
Gao, Chao [1 ,2 ]
Xu, Yanpei [1 ]
Wang, Qi [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
关键词
Lithium-ion battery; Si; CNFs; Anode; Electrochemical performance; STORAGE; STABILITY; OXIDE;
D O I
10.1016/j.est.2024.115112
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The structural design of silicon often addresses the drawbacks of large volume fluctuations during discharge, low electrical conductivity, and fast electrode capacity degradation during cycling. Cladding on the silicon's outer layer is often a usual method. This work presents the rational design of Si@CNFs@MnO2 composite silicon-based anode materials using solvent techniques and electrospun technologies. As the primary carrier, the intermediate layer of carbon nanofibers created by electrospun limits the growth of the inner Si layer and the outer MnO2 layer while simultaneously enhancing the composite structure's overall electrical conductivity. High capacity can be supplied by the outermost layer of MnO2, which also serves to restrict internal expansion. The anode material's contact area with the electrolyte and the active sites for lithium storage is increased by this layered structure, which offers superior cycling performance and a long lifespan. After 1700 cycles at a current density of 2 A g- 1 , it has a reversible capacity of 1152.9 mAh g- 1 with good capacity recovery at varied current densities; this design, which uses carbon nanofibers as the intermediate layer, can be applied to other composite materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries
    Kim, So Yeun
    Lee, Jaewoo
    Kim, Bo-Hye
    Kim, Young-Jun
    Yang, Kap Seung
    Park, Min-Sik
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (19) : 12109 - 12117
  • [42] Freestanding Porous Silicon@Heteroatom-Doped Porous Carbon Fiber Anodes for High-Performance Lithium-Ion Batteries
    Wang, Yanqing
    Yuan, Chunshun
    Li, Kunming
    Li, Dong
    Ju, Anqi
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 11462 - 11471
  • [43] Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes
    Pillai, Manoj Muraleedharan
    Kalidas, Nathiya
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [44] Balancing pore development and mechanical strength for high-performance silicon-porous carbon anodes in lithium-ion batteries
    Yu, Yewei
    Li, Zhenwei
    Zhang, Rui
    Shen, Xiaoqing
    Yu, Peilun
    Yu, Jie
    ELECTROCHIMICA ACTA, 2025, 512
  • [45] Lithium Distribution in Monocrystalline Silicon-Based Lithium-Ion Batteries
    Janski, R.
    Fugger, M.
    Sternad, M.
    Wilkening, M.
    17TH INTERNATIONAL MEETING ON LITHIUM BATTERIES (IMLB 2014), 2014, 62 (01): : 247 - 253
  • [46] High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries
    Jeong, Jae-Hun
    Kim, Kwang-Hyun
    Jung, Dong-Won
    Kim, Ketack
    Lee, Sung-Man
    Oh, Eun-Suok
    JOURNAL OF POWER SOURCES, 2015, 300 : 182 - 189
  • [47] In situ growth of β-FeOOH on hierarchically porous carbon as anodes for high-performance lithium-ion batteries
    Imtiaz, Muhammad
    Chen, Zhixin
    Zhu, Chengling
    Pan, Hui
    Zada, Imran
    Li, Yao
    Bokhari, Syeda Wishal
    Luan, RuiYing
    Nigar, Salma
    Zhu, Shenmin
    ELECTROCHIMICA ACTA, 2018, 283 : 401 - 409
  • [48] Preparation of ZnO Nanorods/Graphene Composite Anodes for High-Performance Lithium-Ion Batteries
    Zhang, Junfan
    Tan, Taizhe
    Zhao, Yan
    Liu, Ning
    NANOMATERIALS, 2018, 8 (12):
  • [49] High-Safety Lithium-Ion Batteries with Silicon-Based Anodes Enabled by Electrolyte Design
    Hu, Kangjia
    Sang, Xiaoyu
    Chen, Jiaxin
    Liu, Zetong
    Zhang, Jiahui
    Hu, Xianluo
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (24)
  • [50] Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries
    Zhao, Yu-Ming
    Yue, Feng-Shu
    Li, Shi-Cheng
    Zhang, Yu
    Tian, Zhong-Rong
    Xu, Quan
    Xin, Sen
    Guo, Yu-Guo
    INFOMAT, 2021, 3 (05) : 460 - 501