Enhancing air traffic control: A transparent deep reinforcement learning framework for autonomous conflict resolution

被引:0
|
作者
Wang, Lei [1 ]
Yang, Hongyu [1 ,2 ]
Lin, Yi [1 ,2 ]
Yin, Suwan [1 ,2 ]
Wu, Yuankai [1 ,2 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610000, Peoples R China
[2] Natl Key Lab Fundamental Sci Synthet Vis, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Conflict resolution; Free flight control; Deep reinforcement learning; Adversarial attack;
D O I
10.1016/j.eswa.2024.125389
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rising traffic demands, advancements in automation, and communication breakthroughs are opening new design frontiers for future air traffic controllers (ATCs). This article introduces a deep reinforcement learning (DRL) controller to support conflict resolution in autonomous free flight. While DRL has made significant strides in this domain, there is scant focus in existing research on the explainability and safety of DRL controllers, especially their robustness against adversarial attacks. To tackle these concerns, we have engineered a fully transparent DRL framework that: (i) separates the intertwined Q-value learning model into distinct modules for safety-awareness and efficiency (target attainment); and (ii) incorporates data from nearby intruders directly, thereby obviating the need for central control. Our simulated experiments demonstrate that this bifurcation of safety-awareness and efficiency not only enhances performance in free flight control tasks but also substantially boosts practical explainability. Moreover, the safety-oriented Q-learning component offers detailed insights into environmental risk factors. To assess resilience against adversarial attacks, we present a novel attack strategy that induces both safety-centric and efficiency-centric disruptions. This adversary aims to degrade safety/efficiency by targeting the agent at select time intervals. Our experimental results reveal that this targeted approach can provoke as many collisions as a uniform attack strategy - that is, attacking at every opportunity - while engaging the agent four times less frequently, shedding light on the potential and limitations of DRL in future ATC system designs. The source code is available to the public at https://github.com/WLeiiiii/Gym-ATC-Attack-Project.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Control
    Wang, Zhuang
    Pan, Weijun
    Li, Hui
    Wang, Xuan
    Zuo, Qinghai
    AEROSPACE, 2022, 9 (06)
  • [2] Deep reinforcement learning based conflict detection and resolution in air traffic control
    Wang, Zhuang
    Li, Hui
    Wang, Junfeng
    Shen, Feng
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (06) : 1041 - 1047
  • [3] CONFLICT RESOLUTION STRATEGY BASED ON DEEP REINFORCEMENT LEARNING FOR AIR TRAFFIC MANAGEMENT
    Sui, Dong
    Ma, Chenyu
    Dong, Jintao
    AVIATION, 2023, 27 (03) : 177 - 186
  • [4] Framework for Control and Deep Reinforcement Learning in Traffic
    Wu, Cathy
    Parvate, Kanaad
    Kheterpal, Nishant
    Dickstein, Leah
    Mehta, Ankur
    Vinitsky, Eugene
    Bayen, Alexandre M.
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [5] Deep Reinforcement Learning for Autonomous Traffic Light Control
    Garg, Deepeka
    Chli, Maria
    Vogiatzis, George
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2018, : 214 - 218
  • [6] Tactical Conflict Solver Assisting Air Traffic Controllers Using Deep Reinforcement Learning
    Sui, Dong
    Ma, Chenyu
    Wei, Chunjie
    AEROSPACE, 2023, 10 (02)
  • [7] A framework for conflict resolution in air traffic management
    Resmerita, S
    Heymann, M
    Meyer, G
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 2035 - 2040
  • [8] Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution
    Zhao, Peng
    Liu, Yongming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8288 - 8301
  • [9] EGLight: enhancing deep reinforcement learning with expert guidance for traffic signal control
    Zhang, Meng
    Wang, Dianhai
    Cai, Zhengyi
    Huang, Yulang
    Yu, Hongxin
    Qin, Hanwu
    Zeng, Jiaqi
    TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2025,
  • [10] Self-Prioritizing Multi-Agent Reinforcement Learning for Conflict Resolution in Air Traffic Control with Limited Instructions
    Nilsson, Jens
    Unger, Jonas
    Eilertsen, Gabriel
    AEROSPACE, 2025, 12 (02)