Nonlinear hysteresis model and control of magnetostrictive micropositioner

被引:2
作者
Tang, Zhifeng [1 ]
Lu, Fuzai [1 ]
Xiang, Zhanqin [1 ]
机构
[1] Modern Manufacture Engineering Institute, Zhejiang University
来源
Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering | 2007年 / 43卷 / 06期
关键词
Control; Hysteresis; Magnetostrictive;
D O I
10.3901/JME.2007.06.055
中图分类号
学科分类号
摘要
Aiming at the non-linearity and hysteresis of giant magnetostrictive actuator (GMA), two numerical realization of Preisach model by density function method (DFM) and F fuction method (FFM) are present. Experiment and simulation show that FFM is better than DFM over predict precision of hysteresis loops. To make the Preisach numerical model in application to practical control of GMA, a real-time numerical compensation algorithm for preisach model is pointed out, and a PID plus Preisach feedforward compensation (PFC) control model is build up, open-loop, general PID and PID plus PFC are independently applied to GMA for the position tracking and trajectory tracking. Experiment results reveal that PID plus PFC has faster response, higher precision of position tracking and trajectory tracking than open-loop and general PID, 3μm position tracking error and 2μm trajectory tracking error in the range of 100μm can be attained by PID plus PFC.
引用
收藏
页码:55 / 61
页数:6
相关论文
共 8 条
  • [1] Joshi C.H., Cryogenic magnetostrictive actuators and stepper motors, Proceedings of SPIE, 4131, pp. 240-249, (2000)
  • [2] Venkataraman R., Krishnaprasad P.S., A novel algorithm for the inversion of the Preisach operator, Proceedings of SPIE, 3984, pp. 404-414, (2000)
  • [3] Visone C., Serpico C., Hysteresis operators for the modeling of magnetostrictive materials, Journal of Physica B, 306, pp. 78-83, (2001)
  • [4] Tan X.B., Venkataraman R., Krishnaprasad P.S., Control of hysteresis: Theory and experimental results, Proceedings of SPIE, 4326, pp. 101-112, (2001)
  • [5] Hughes D., Wen J.T., Preisach modeling and compensation for smart material hysteresis, Proceedings of SPIE, 2442, pp. 328-336
  • [6] Mayergoyz I.D., Dynamic vector Preisach models of hysteresis, J. Appl. Phys, 69, 8, pp. 4829-4831, (1991)
  • [7] Ge P., Jouaneh M., Modeling hysteresis in piezoceramic actuators, Precision Eng, 17, pp. 211-221, (1995)
  • [8] Restorff J.B., Savage H.T., Clark A.E., Preisach modeling of hysteresis in Terfenol, J. Appl. Phys., 67, 9, pp. 5016-5018, (1990)