Mechanism analysis of the magnetic field assisted 3D printed steel fiber reinforced concrete

被引:0
|
作者
Huang, Junxiang [1 ,2 ]
Ren, Kai [1 ,2 ]
Han, Dong [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mech Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
关键词
3D printed steel fiber reinforced concrete; Magnetic orientation; Fiber bridging; Mechanical properties; X -ray-based non-destructive testing; PERFORMANCE; ORIENTATION; TIME; SLIP;
D O I
10.1016/j.conbuildmat.2024.139737
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The magnetic orientation of steel fibers in concrete, extensively studied in formwork-cast concrete for improving crack-bridging capacity, has yet to be analyzed for its feasibility in adjusting fiber orientation via magnetic field in 3D printed concrete. This study thus aims to propose a technique for in-situ magnetization of steel fibers and quantitatively investigate fiber magnetic orientation in 3D printed concrete. Relations between critical process parameters and the fiber magnetic orientation were investigated, including magnetic induction intensity, fiber volume fraction, and fiber types. The results reveal that when the magnetic induction intensity at the center of the nozzle reaches 34mT and the fiber volume fraction is 0.5%, 25 mm bow steel fibers (BF25) exhibit the most significant effect on bridging cracks, with a maximum improvement in mechanical properties of over 50 %. The enhancement of the mechanical properties demonstrates the huge potential of applying fiber magnetic orientation in 3D printed engineering concrete.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Basalt fiber reinforced polypropylene to manufacture 3D printed composites
    Pelaez-Samaniego, Manuel Raul
    Rhodes, Kyleigh
    Garcia-Perez, Tsai
    Chang, Yu-Chung
    Zhang, Jinwen
    Bin Bakri, Muhammad Khusairy
    Yadama, Vikram
    POLYMER COMPOSITES, 2024, 45 (13) : 12362 - 12376
  • [22] Machinability of 3D printed peek reinforced with short carbon fiber
    Gomez-Garcia, D.
    Diaz-Alvarez, A.
    Youssef, George
    Miguelez, Henar
    Diaz-Alvarez, J.
    COMPOSITES PART C: OPEN ACCESS, 2023, 12
  • [23] The magnetic anisotropy of field-assisted 3D printed nylon strontium ferrite composites
    Khadka, Mandesh
    Arigbabowo, Oluwasola K.
    Tate, Jitendra S.
    Geerts, Wilhelmus J.
    AIP ADVANCES, 2024, 14 (02)
  • [24] Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites
    Fu, Yutong
    Yao, Xuefeng
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 216
  • [25] Research and mechanism analysis on dynamic compressive behavior of steel fiber reinforced concrete
    Zhao, Yanfei
    Wu, Bo
    Peng, Shuai
    Yu, Zhenpeng
    Du, Xiaoqing
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 368
  • [26] Impact response of textile-reinforced 3D printed concrete panels
    Ramesh, Akilesh
    Rajeev, Pathmanathan
    Xu, Shanqing
    Sanjayan, Jay
    Lu, Guoxing
    ENGINEERING STRUCTURES, 2024, 315
  • [27] Impact behaviour of 3D printed fiber reinforced cementitious composite beams
    Pan, Jinlong
    Ping, Pengxin
    Ding, Boyin
    Zhu, Binrong
    Lin, Yuanzheng
    Ukrainczyk, Neven
    Zhang, Hong
    Cai, Jingming
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 182
  • [28] Buildability and Mechanical Properties of 3D Printed Concrete
    Joh, Changbin
    Lee, Jungwoo
    Bui, The Quang
    Park, Jihun
    Yang, In-Hwan
    MATERIALS, 2020, 13 (21) : 1 - 24
  • [29] Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms
    Alyami, Mana
    Khan, Majid
    Fawad, Muhammad
    Nawaz, R.
    Hammad, Ahmed W. A.
    Najeh, Taoufik
    Gamil, Yaser
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [30] Strain rate dependence of 3D printed continuous fiber reinforced composites
    Li, Jiahui
    Xu, Shanqing
    Durandet, Yvonne
    Gao, Wei
    Huang, Xiaodong
    Ruan, Dong
    COMPOSITES PART B-ENGINEERING, 2024, 277