Pseudomodes of Schrödinger operators

被引:0
|
作者
Krejcirik, David [1 ]
Siegl, Petr [2 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Prague, Czech Republic
[2] Graz Univ Technol, Inst Appl Math, Graz, Austria
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
pseudospectrum; non-self-adjointness; Schr & ouml; dinger operators; complex potentials; WKB method; HARMONIC-OSCILLATOR; PSEUDOSPECTRA; SPECTRA;
D O I
10.3389/fphy.2024.1479658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Pseudomodes of non-self-adjoint Schr & ouml;dinger operators corresponding to large pseudoeigenvalues are constructed. The approach is non-semiclassical and extendable to other types of models including the damped wave equation and Dirac operators.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [2] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [3] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84
  • [4] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [5] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [6] Perturbations of Magnetic Schrödinger Operators
    M. Măntoiu
    M. Pascu
    Letters in Mathematical Physics, 2000, 54 : 181 - 192
  • [7] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418
  • [8] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [9] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [10] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716