Achieving efficient autotrophic nitrogen removal in anaerobic membrane bioreactor plus membrane aerated biofilm reactor by regulating nutrient ratios

被引:1
|
作者
Han, Yu-Lin [1 ]
Shi, Ling-Dong [1 ]
Zhao, He-Ping [1 ]
机构
[1] Zhejiang Univ, Coll Environm & Resource Sci, MOE Key Lab Environm Remediat & Ecosyst Hlth, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
Sulfate reduction; Autotrophic denitrification; Response surface methodology; Life cycle assessment; WASTE-WATER TREATMENT; REDUCING GRANULAR SLUDGE; SULFATE REDUCTION; DENITRIFICATION; NITRIFICATION; NITRATE;
D O I
10.1016/j.biortech.2024.131832
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
It is feasible to integrate an anaerobic membrane bioreactor with a membrane aerated biofilm reactor to efficiently implement the sulfate reduction, simultaneous nitrification and autotrophic denitrification process. However, the effect of parameters on nutrient removal and environmental impacts of the process are unclear. In this study, the reactor performance was mainly influenced by the chemical oxygen demand to sulfate (COD/S) ratio and the ammonium to sulfate (N/S) ratio in long-term operation. Significant models were developed to optimize the two factors using the response surface methodology. Under optimal conditions (COD/S ratio of 2.5 and N/S ratio of 0.3), the system could remove above 86 % COD, 99 % ammonium, and 92 % total inorganic nitrogen. Moreover, this process could reduce energy consumption by 30 % and global warming potential by 50 % compared with traditional anaerobic/oxic activated sludge process. These findings provide guidance for the application of this technology in sulfate-containing municipal sewage treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Impact of comammox process on membrane-aerated biofilm reactor for autotrophic nitrogen removal
    Hou, Jiaying
    Zhu, Ying
    Meng, Fangang
    Ni, Bing-Jie
    Chen, Xueming
    WATER RESEARCH X, 2025, 28
  • [2] Achieving biofilm control in a membrane biofilm reactor removing total nitrogen
    Hwang, Jong Hyuk
    Cicek, Nazim
    Oleszkiewicz, Jan A.
    WATER RESEARCH, 2010, 44 (07) : 2283 - 2291
  • [3] Biodegradation of pharmaceuticals in membrane aerated biofilm reactor for autotrophic nitrogen removal: A model-based evaluation
    Peng, Lai
    Chen, Xueming
    Xu, Yifeng
    Liu, Yiwen
    Gao, Shu-Hong
    Ni, Bing-Jie
    JOURNAL OF MEMBRANE SCIENCE, 2015, 494 : 39 - 47
  • [4] Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox
    Gong, Zheng
    Yang, Fenglin
    Liu, Sitong
    Bao, Han
    Hu, Shaowei
    Furukawa, Kenji
    CHEMOSPHERE, 2007, 69 (05) : 776 - 784
  • [5] Enhanced carbon and nitrogen removal in an integrated anaerobic/anoxic/aerobic-membrane aerated biofilm reactor system
    Sun, Zhiye
    Li, Mei
    Wang, Guofeng
    Yan, Xiaojun
    Li, Yi
    Lan, Meichao
    Liu, Rukang
    Li, Baoan
    RSC ADVANCES, 2020, 10 (48) : 28838 - 28847
  • [6] Nitrogen removal performances of a polyvinylidene fluoride membrane-aerated biofilm reactor
    Lin, Jiayi
    Zhang, Panyue
    Yin, Jiang
    Zhao, Xuehao
    Li, Juan
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2015, 102 : 49 - 55
  • [7] Simultaneous removal of organic matter and nitrogen compounds by combining a membrane bioreactor and a membrane biofilm reactor
    Hasar, Halil
    BIORESOURCE TECHNOLOGY, 2009, 100 (10) : 2699 - 2705
  • [8] Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal
    Gong, Zheng
    Liu, Sitong
    Yang, Fenglin
    Bao, Han
    Furukawa, Kenji
    BIORESOURCE TECHNOLOGY, 2008, 99 (08) : 2749 - 2756
  • [9] The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor
    Shin, JH
    Sang, BI
    Chung, YC
    Choung, YK
    DESALINATION, 2005, 183 (1-3) : 447 - 454
  • [10] Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor
    Lin, Jiayi
    Zhang, Panyue
    Li, Gaopeng
    Yin, Jiang
    Li, Juan
    Zhao, Xuehao
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2016, 113 : 74 - 79