Experimental investigation of heat transfer characteristics for a shell and tube heat exchanger

被引:0
|
作者
Gugulothu R. [1 ]
Sanke N. [1 ]
机构
[1] Department of Mechanical Engineering, University College of Engineering, Osmania University, Hyderabad
关键词
heat exchanger; nanofluids; shell; tube heat exchanger;
D O I
10.1515/ehs-2022-0147
中图分类号
学科分类号
摘要
In the present work, numerical investigations are conducted with 22 % cut segmental baffle heat exchanger (SB), 20°, 30°, and 40° helical baffles shell and tube heat exchangers (STHX) to estimate the overall heat transfer coefficient (OHTC), pressure drop (PD) and friction factor. Among the studied heat exchangers (HE), 40° helical baffles STHX provided the highest OHTC with minimum pressure drop. Hence, further investigations are conducted experimentally with 40° helical baffles STHX. OHTC increased by 2.65 % for 20° helical baffles, 5.37 % for 30° helical baffles, 9.78 % for 40° helical baffles when compared with 22 % cut segmental baffle heat exchanger. The deviation between experimental and numerical OHTC is 2.64 % 40° helical baffles. © 2024 the author(s), published by De Gruyter.
引用
收藏
相关论文
共 50 条
  • [1] EFFECTS OF NANOFLUIDS ON HEAT TRANSFER CHARACTERISTICS IN SHELL AND TUBE HEAT EXCHANGER
    Perumal, Sakthivel
    Venkatraman, Vijayan
    Sivanraju, Rajkumar
    Mekonnen, Addisalem
    Thanikodi, Sathish
    Chinnappan, Ramesh
    THERMAL SCIENCE, 2022, 26 (02): : 835 - 841
  • [2] EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF NANOFLUID USING PARALLEL FLOW, COUNTER FLOW AND SHELL AND TUBE HEAT EXCHANGER
    Dharmalingam, R.
    Sivagnanaprabhu, K. K.
    Yogaraja, J.
    Gunasekaran, S.
    Mohan, R.
    ARCHIVE OF MECHANICAL ENGINEERING, 2015, 62 (04) : 509 - 522
  • [3] Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger
    Rao, M. Siva Eswara
    Sreeramulu, Dowluru
    Naidu, D. Asiri
    INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND MANUFACTURING APPLICATIONS (ICONAMMA-2016), 2016, 149
  • [4] Experimental investigation of shell side heat transfer and pressure drop in a mini-channel shell and tube heat exchanger
    Kucuk, Hasan
    Unverdi, Murat
    Yilmaz, Mehmet Senan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 143
  • [5] Heat transfer of nanofluids in a shell and tube heat exchanger
    Farajollahi, B.
    Etemad, S. Gh.
    Hojjat, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (1-3) : 12 - 17
  • [6] Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger
    Karimi, Siamak
    Heyhat, Mohammad Mahdi
    Isfahan, Amir Homayoon Meghdadi
    Hosseinian, Ali
    HEAT AND MASS TRANSFER, 2020, 56 (08) : 2325 - 2331
  • [7] Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger
    Siamak Karimi
    Mohammad Mahdi Heyhat
    Amir Homayoon Meghdadi Isfahani
    Ali Hosseinian
    Heat and Mass Transfer, 2020, 56 : 2325 - 2331
  • [8] Experimental investigation of heat transfer performance coefficient in tube bundle of shell and tube heat exchanger in two-phase flow
    Karas, Marcin
    Zajac, Daniel
    Ulbrich, Roman
    ARCHIVES OF THERMODYNAMICS, 2014, 35 (01) : 87 - 98
  • [9] EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE LOSS CHARACTERISTICS OF THE GROOVED HELICALLY COILED TUBE HEAT EXCHANGER
    Cao, Jiaming
    Wang, Xuesheng
    Yuan, Yuyang
    Zhang, Zhao
    Xiao, Zhengyan
    HEAT TRANSFER RESEARCH, 2024, 55 (03) : 75 - 94
  • [10] Heat transfer analysis of shell and tube heat exchanger cooled using nanofluids
    Kareemullah M.
    Chethan K.M.
    Fouzan M.K.
    Darshan B.V.
    Kaladgi A.R.
    Prashanth M.B.H.
    Muneer R.
    Yashawantha K.M.
    Recent Patents on Mechanical Engineering, 2019, 12 (04): : 350 - 356