Quantum computing with error mitigation for data-driven computational homogenization

被引:0
作者
Kuang, Zengtao [1 ]
Xu, Yongchun [1 ]
Huang, Qun [1 ]
El Kihal, Chafik [1 ,3 ]
El Kihal, Chafik [1 ,3 ]
Hu, Heng [1 ,2 ]
机构
[1] Wuhan Univ, Sch Civil Engn, 8 South Rd East Lake, Wuhan 430072, Peoples R China
[2] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
[3] Ctr Rech Syst Complexes & Interact, Cent Casablanca, Bouskoura 27182, Ville Verte, Morocco
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Quantum computing; Data-driven computational homogenization; Error mitigation; Zero-noise extrapolation; Distance calculation; MODEL;
D O I
10.1016/j.compstruct.2024.118625
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
As a crossover frontier of physics and mechanics, quantum computing is showing its great potential in computational mechanics. However, quantum hardware noise remains a critical barrier to achieving accurate simulation results due to the limitation of the current hardware. In this paper, we integrate error-mitigated quantum computing in data-driven computational homogenization, where the zero-noise extrapolation (ZNE) technique is employed to improve the reliability of quantum computing. Specifically, ZNE is utilized to mitigate the quantum hardware noise in two quantum algorithms for distance calculation, namely a Swap-based algorithm and an H-based algorithm, thereby improving the overall accuracy of data-driven computational homogenization. Multiscale simulations of a 2D composite L-shaped beam and a 3D composite cylindrical shell are conducted with the quantum computer simulator Qiskit, and the results validate the effectiveness of the proposed method. We believe this work presents a promising step towards using quantum computing in computational mechanics.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Data-Driven Trust Prediction in Mobile Edge Computing-Based IoT Systems
    Abeysekara, Prabath
    Dong, Hai
    Qin, A. K.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (01) : 246 - 260
  • [42] Data-Driven Deformation Reliability of Retaining Structures in Deep Excavations Considering Measurement Error
    Xu, Li
    Xu, Yang
    Wang, Cao
    Feng, Kairui
    APPLIED SCIENCES-BASEL, 2019, 9 (24):
  • [43] Adaptive neural network for quantum error mitigation
    Adeniyi, Temitope Bolaji
    Kumar, Sathish A. P.
    QUANTUM MACHINE INTELLIGENCE, 2025, 7 (01)
  • [44] Quantum Error Mitigation Relying on Permutation Filtering
    Xiong, Yifeng
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (03) : 1927 - 1942
  • [45] Configurable Readout Error Mitigation in Quantum Workflows
    Beisel, Martin
    Barzen, Johanna
    Leymann, Frank
    Truger, Felix
    Weder, Benjamin
    Yussupov, Vladimir
    ELECTRONICS, 2022, 11 (19)
  • [46] Distance minimizing based data-driven computational method for the finite deformation of hyperelastic materials
    Zheng, Zhangcheng
    Zhang, Zijian
    Ye, Hongfei
    Zhang, Hongwu
    Zheng, Yonggang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (10) : 2315 - 2340
  • [47] A Trustable Data-Driven Optimal Power Flow Computational Method With Robust Generalization Ability
    Gao, Maosheng
    Yu, Juan
    Kamel, Salah
    Yang, Zhifang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [48] Genetic Algorithms for Error Mitigation in Quantum Measurement
    Acampora, Giovanni
    Grossi, Michele
    Vitiello, Autilia
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1826 - 1832
  • [49] Data-driven discovery of cardiolipin-selective small molecules by computational active learning
    Mohr, Bernadette
    Shmilovich, Kirill
    Kleinwaechter, Isabel S.
    Schneider, Dirk
    Ferguson, Andrew L.
    Bereau, Tristan
    CHEMICAL SCIENCE, 2022, 13 (16) : 4498 - 4511
  • [50] Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries
    Shaydulin, Ruslan
    Galda, Alexey
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 291 - 300