Quantum computing with error mitigation for data-driven computational homogenization

被引:0
|
作者
Kuang, Zengtao [1 ]
Xu, Yongchun [1 ]
Huang, Qun [1 ]
El Kihal, Chafik [1 ,3 ]
El Kihal, Chafik [1 ,3 ]
Hu, Heng [1 ,2 ]
机构
[1] Wuhan Univ, Sch Civil Engn, 8 South Rd East Lake, Wuhan 430072, Peoples R China
[2] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
[3] Ctr Rech Syst Complexes & Interact, Cent Casablanca, Bouskoura 27182, Ville Verte, Morocco
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Quantum computing; Data-driven computational homogenization; Error mitigation; Zero-noise extrapolation; Distance calculation; MODEL;
D O I
10.1016/j.compstruct.2024.118625
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
As a crossover frontier of physics and mechanics, quantum computing is showing its great potential in computational mechanics. However, quantum hardware noise remains a critical barrier to achieving accurate simulation results due to the limitation of the current hardware. In this paper, we integrate error-mitigated quantum computing in data-driven computational homogenization, where the zero-noise extrapolation (ZNE) technique is employed to improve the reliability of quantum computing. Specifically, ZNE is utilized to mitigate the quantum hardware noise in two quantum algorithms for distance calculation, namely a Swap-based algorithm and an H-based algorithm, thereby improving the overall accuracy of data-driven computational homogenization. Multiscale simulations of a 2D composite L-shaped beam and a 3D composite cylindrical shell are conducted with the quantum computer simulator Qiskit, and the results validate the effectiveness of the proposed method. We believe this work presents a promising step towards using quantum computing in computational mechanics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantum computing enhanced distance-minimizing data-driven computational mechanics
    Xu, Yongchun
    Yang, Jie
    Kuang, Zengtao
    Huang, Qun
    Huang, Wei
    Hu, Heng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 419
  • [2] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [3] Error-mitigated data-driven circuit learning on noisy quantum hardware
    Hamilton, Kathleen E.
    Pooser, Raphael C.
    QUANTUM MACHINE INTELLIGENCE, 2020, 2 (01)
  • [4] Error-mitigated data-driven circuit learning on noisy quantum hardware
    Kathleen E. Hamilton
    Raphael C. Pooser
    Quantum Machine Intelligence, 2020, 2
  • [5] Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation
    Huang, He-Liang
    Xu, Xiao-Yue
    Guo, Chu
    Tian, Guojing
    Wei, Shi-Jie
    Sun, Xiaoming
    Bao, Wan-Su
    Long, Gui-Lu
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (05)
  • [6] Modelling for Quantum Error Mitigation
    Weber, Tom
    Riebisch, Matthias
    Borras, Kerstin
    Jansen, Karl
    Kruecker, Dirk
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C), 2021, : 102 - 105
  • [7] Data-Driven Computational Social Science: A Survey
    Zhang, Jun
    Wang, Wei
    Xia, Feng
    Lin, Yu-Ru
    Tong, Hanghang
    BIG DATA RESEARCH, 2020, 21
  • [8] Data-Driven Learning for Data Rights, Data Pricing, and Privacy Computing
    Xu, Jimin
    Hong, Nuanxin
    Xu, Zhening
    Zhao, Zhou
    Wu, Chao
    Kuang, Kun
    Wang, Jiaping
    Zhu, Mingjie
    Zhou, Jingren
    Ren, Kui
    Yang, Xiaohu
    Lu, Cewu
    Pei, Jian
    Shum, Harry
    ENGINEERING, 2023, 25 : 66 - 76
  • [9] Applications of noisy quantum computing and quantum error mitigation to "adamantaneland": a benchmarking study for quantum chemistry
    Prasad, Viki Kumar
    Cheng, Freeman
    Fekl, Ulrich
    Jacobsen, Hans-Arno
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (05) : 4071 - 4082
  • [10] A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites
    Lu, Xiaoxin
    Giovanis, Dimitris G.
    Yvonnet, Julien
    Papadopoulos, Vissarion
    Detrez, Fabrice
    Bai, Jinbo
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 307 - 321