NOESY investigation of bicalutamide conformational changes in DMSO: Role of solution concentration in polymorph formation

被引:0
作者
Belov, Konstantin V. [1 ]
Khodov, Ilya A. [1 ]
机构
[1] G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo
基金
俄罗斯科学基金会;
关键词
Bicalutamide; Conformers; Drugs; NMR; NOESY; Spatial structure;
D O I
10.1016/j.molliq.2025.126896
中图分类号
学科分类号
摘要
Conformationally polymorphism refers to the phenomenon where the formation of different solid forms of a compound is predominantly governed by the molecular conformation in solution. This study explores the conformational behavior of bicalutamide (BCL), a nonsteroidal antiandrogen with low aqueous solubility, which influences its nucleation pathway and polymorph formation. Bicalutamide exists in two distinct conformations, «open» (Form I) and «closed» (Form II), which are concentration-dependent and determined by intra- and intermolecular interactions. These conformational differences affect the nucleation process, packing efficiency, and stability of the polymorphs, impacting the solubility, stability, and bioavailability of the compound. Using NMR spectroscopy and quantum-chemical calculations, the distribution of «open» and «closed» BCL conformers was studied at various concentrations in dimethyl sulfoxide (DMSO‑d6). Results show a shift in the conformer population from predominantly «closed» at high concentrations to predominantly «open» at lower concentrations, with a sharp transition observed in the concentration range of 1.44 M to 1.08 M. This concentration-induced conformational rearrangement influences the nucleation pathways and polymorph formation, critical for pharmaceutical applications, as different polymorphs exhibit variations in physicochemical properties. © 2025 Elsevier B.V.
引用
收藏
相关论文
共 58 条
  • [1] Cruz-Cabeza A.J., Bernstein J., Conformational Polymorphism, Chem. Rev., 114, pp. 2170-2191, (2014)
  • [2] Bauer J., Spanton S., Henry R., Quick J., Dziki W., Porter W., Morris J., Ritonavir: An extraordinary example of conformational polymorphism, Pharm. Res., 18, pp. 859-866, (2001)
  • [3] Nangia A., Conformational polymorphism in organic crystals, Acc. Chem. Res., 41, pp. 595-604, (2008)
  • [4] Kaiser T.E., Stepanenko V., Wurthner F., Fluorescent J-aggregates of core-substituted perylene bisimides: Studies on structure-property relationship, nucleation-elongation mechanism, and sergeants-and-soldiers principle, J. Am. Chem. Soc., 131, pp. 6719-6732, (2009)
  • [5] Caronna T., Liantonio R., Logothetis T.A., Metrangolo P., Pilati T., Resnati G., Halogen Bonding and π-π Stacking Control Reactivity in the Solid State, J. Am. Chem. Soc., 126, pp. 4500-4501, (2004)
  • [6] Kelley R.F., Rybtchinski B., Stone M.T., Moore J.S., Wasielewski M.R., Solution-phase structure of an artificial foldamer: X-ray scattering study, J. Am. Chem. Soc., 129, pp. 4114-4115, (2007)
  • [7] Singh S.K., Das A., The n → π* interaction: a rapidly emerging non-covalent interaction, PCCP, 17, pp. 9596-9612, (2015)
  • [8] Wang C., Danovich D., Mo Y., Shaik S., On the nature of the halogen bond, J. Chem. Theory Comput., 10, pp. 3726-3737, (2014)
  • [9] Rashkin M.J., Waters M.L., Unexpected substituent effects in offset π-π stacked interactions in water, J. Am. Chem. Soc., 124, pp. 1860-1861, (2002)
  • [10] Cockshott I.D., Bicalutamide: Clinical pharmacokinetics and metabolism, Clin. Pharmacokinet., 43, pp. 855-878, (2004)