High hydrostatic pressure (HHP; 200-600 MPa at 24 degrees C for 20 min) and dynamic high pressure (DHP; 50-180 MPa) were applied to modulate the techno-functional properties of quinoa protein concentrate (QPC) produced from non-defatted flour using a lab-scale extraction. QPC's unique composition, with 74.6 % protein and significant levels of unsaturated fatty acids, influenced the effects of HHP and DHP. HHP significantly (P < 0.05) enhanced hydration properties, peaking at 400 and 500 MPa (on average 4.34 g/g), while DHP reduced the oil absorption capacity from 2.5 to 1.8 g/g. Both processing techniques decreased QPC protein solubility. This reduction corresponded to decreased foaming capacity and emulsifying properties in HHP-processed QPC. DHP increased emulsifying activity and stability indices, with optimized improvements at 100 MPa of 39.4 and 414.4 %, respectively. These modifications in QPC's properties occurred without noticeable loss in in vitro protein digestibility (IVPDaverage = 86.1 %). The findings support the potential of high-pressure technologies to uniquely modulate different techno-functional properties of QPC, produced from non-defatted flour, while maintaining high digestibility, thereby offering greater versatility in its use. Industrial relevance: Quinoa is a strategic choice for diversifying plant protein sources, with the use of nondefatted flour in QPC production offering new insights into its composition and properties, reducing both costs and environmental impact. In this study, HHP and DHP, recognized as "green" physical processing technologies, demonstrated advantageous potential to develop innovative quinoa protein ingredients with added value and clean-label appeal, while maintaining their high nutritional value. The distinctive effects of highpressure technologies and varying pressure levels on modulating QPC's techno-functional properties underscore the creation of multifunctional QPC and the optimization of key properties, addressing the urgent demands of the plant-based food segment.